Endogenous Fe
Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could resp...
Ausführliche Beschreibung
Autor*in: |
Chen, Jufeng [verfasserIn] Xue, Fengfeng [verfasserIn] Du, Wenxian [verfasserIn] Deng, Xi [verfasserIn] Wu, Yiji [verfasserIn] Chen, Hangrong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 471 |
---|---|
Übergeordnetes Werk: |
volume:471 |
DOI / URN: |
10.1016/j.cej.2023.144358 |
---|
Katalog-ID: |
ELV061360791 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061360791 | ||
003 | DE-627 | ||
005 | 20231208093236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230808s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.144358 |2 doi | |
035 | |a (DE-627)ELV061360791 | ||
035 | |a (ELSEVIER)S1385-8947(23)03089-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Chen, Jufeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Endogenous Fe |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. | ||
650 | 4 | |a Chemodynamic therapy | |
650 | 4 | |a Photothermal therapy | |
650 | 4 | |a Ferroptosis | |
650 | 4 | |a Copper Prussian blue analogues | |
650 | 4 | |a Erastin | |
700 | 1 | |a Xue, Fengfeng |e verfasserin |4 aut | |
700 | 1 | |a Du, Wenxian |e verfasserin |4 aut | |
700 | 1 | |a Deng, Xi |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yiji |e verfasserin |4 aut | |
700 | 1 | |a Chen, Hangrong |e verfasserin |0 (orcid)0000-0003-0451-0406 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 471 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:471 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 471 |
author_variant |
j c jc f x fx w d wd x d xd y w yw h c hc |
---|---|
matchkey_str |
article:18733212:2023----::noeo |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.144358 doi (DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Chen, Jufeng verfasserin aut Endogenous Fe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin Xue, Fengfeng verfasserin aut Du, Wenxian verfasserin aut Deng, Xi verfasserin aut Wu, Yiji verfasserin aut Chen, Hangrong verfasserin (orcid)0000-0003-0451-0406 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
spelling |
10.1016/j.cej.2023.144358 doi (DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Chen, Jufeng verfasserin aut Endogenous Fe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin Xue, Fengfeng verfasserin aut Du, Wenxian verfasserin aut Deng, Xi verfasserin aut Wu, Yiji verfasserin aut Chen, Hangrong verfasserin (orcid)0000-0003-0451-0406 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfields_unstemmed |
10.1016/j.cej.2023.144358 doi (DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Chen, Jufeng verfasserin aut Endogenous Fe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin Xue, Fengfeng verfasserin aut Du, Wenxian verfasserin aut Deng, Xi verfasserin aut Wu, Yiji verfasserin aut Chen, Hangrong verfasserin (orcid)0000-0003-0451-0406 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfieldsGer |
10.1016/j.cej.2023.144358 doi (DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Chen, Jufeng verfasserin aut Endogenous Fe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin Xue, Fengfeng verfasserin aut Du, Wenxian verfasserin aut Deng, Xi verfasserin aut Wu, Yiji verfasserin aut Chen, Hangrong verfasserin (orcid)0000-0003-0451-0406 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfieldsSound |
10.1016/j.cej.2023.144358 doi (DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Chen, Jufeng verfasserin aut Endogenous Fe 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin Xue, Fengfeng verfasserin aut Du, Wenxian verfasserin aut Deng, Xi verfasserin aut Wu, Yiji verfasserin aut Chen, Hangrong verfasserin (orcid)0000-0003-0451-0406 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
language |
English |
source |
Enthalten in The chemical engineering journal 471 volume:471 |
sourceStr |
Enthalten in The chemical engineering journal 471 volume:471 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Chen, Jufeng @@aut@@ Xue, Fengfeng @@aut@@ Du, Wenxian @@aut@@ Deng, Xi @@aut@@ Wu, Yiji @@aut@@ Chen, Hangrong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV061360791 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061360791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231208093236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061360791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)03089-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Endogenous Fe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemodynamic therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferroptosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Prussian blue analogues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erastin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Fengfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Wenxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yiji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hangrong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0451-0406</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">471</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:471</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">471</subfield></datafield></record></collection>
|
author |
Chen, Jufeng |
spellingShingle |
Chen, Jufeng ddc 660 bkl 58.10 misc Chemodynamic therapy misc Photothermal therapy misc Ferroptosis misc Copper Prussian blue analogues misc Erastin Endogenous Fe |
authorStr |
Chen, Jufeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Endogenous Fe Chemodynamic therapy Photothermal therapy Ferroptosis Copper Prussian blue analogues Erastin |
topic |
ddc 660 bkl 58.10 misc Chemodynamic therapy misc Photothermal therapy misc Ferroptosis misc Copper Prussian blue analogues misc Erastin |
topic_unstemmed |
ddc 660 bkl 58.10 misc Chemodynamic therapy misc Photothermal therapy misc Ferroptosis misc Copper Prussian blue analogues misc Erastin |
topic_browse |
ddc 660 bkl 58.10 misc Chemodynamic therapy misc Photothermal therapy misc Ferroptosis misc Copper Prussian blue analogues misc Erastin |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Endogenous Fe |
ctrlnum |
(DE-627)ELV061360791 (ELSEVIER)S1385-8947(23)03089-9 |
title_full |
Endogenous Fe |
author_sort |
Chen, Jufeng |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Chen, Jufeng Xue, Fengfeng Du, Wenxian Deng, Xi Wu, Yiji Chen, Hangrong |
container_volume |
471 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Jufeng |
doi_str_mv |
10.1016/j.cej.2023.144358 |
normlink |
(ORCID)0000-0003-0451-0406 |
normlink_prefix_str_mv |
(orcid)0000-0003-0451-0406 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
endogenous fe |
title_auth |
Endogenous Fe |
abstract |
Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. |
abstractGer |
Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. |
abstract_unstemmed |
Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Endogenous Fe |
remote_bool |
true |
author2 |
Xue, Fengfeng Du, Wenxian Deng, Xi Wu, Yiji Chen, Hangrong |
author2Str |
Xue, Fengfeng Du, Wenxian Deng, Xi Wu, Yiji Chen, Hangrong |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.144358 |
up_date |
2024-07-06T17:32:59.894Z |
_version_ |
1803851849946628096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061360791</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231208093236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144358</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061360791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)03089-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Jufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Endogenous Fe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Endogenous activated nanomedicines have great potential in improving therapeutic efficacy and minimizing side effects in cancer therapy. Herein, a novel nanomedicine (CuHCF) was developed based on a mixed-metal (Cu2+/Fe3+) Prussian blue analogue via a facile co-precipitation method, which could respond to the endogenous labile iron pool (LIP) achieving enhanced chemodynamic therapy (CDT) and in situ NIR-II photothermal therapy (PTT) of tumor. Notably, the prepared CuHCF itself shows low Fenton catalytic activity, which however, is found to significantly amplify the generation of reactive oxidative species (ROS) when exposed to the over-expressed Fe2+ in tumor region, since the intracellular Fe2+ triggers the redox cycles between Fe3+/Fe2+ and Cu2+/Cu+ of CuHCF. More interestingly, it is found that the CuHCF presents an obviously enhanced near-infrared absorption after reacting with Fe2+, enabling in situ hyperthermia under NIR-II (1064 nm) irradiation. Both in vitro and in vivo results demonstrated that a highly efficient synergistic therapy of CDT/PTT was achieved via a ferroptosis pathway when CuHCF was combined with the ferroptosis inducer erastin (ERA). Such an endogenous activated nanomedicine provides a promising paradigm to enhance specific CDT in synergy with in situ NIR-II PTT for precise cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemodynamic therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photothermal therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferroptosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper Prussian blue analogues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Erastin</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Fengfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Wenxian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yiji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Hangrong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0451-0406</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">471</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:471</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">471</subfield></datafield></record></collection>
|
score |
7.400585 |