Co-passivation of perovskite film towards stable and efficient perovskite solar cell
Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative...
Ausführliche Beschreibung
Autor*in: |
Li, Wang [verfasserIn] Zhu, Annan [verfasserIn] Gu, Hao [verfasserIn] Wang, Bingzhe [verfasserIn] Wang, Gang [verfasserIn] Li, Shengwen [verfasserIn] Chen, Shi [verfasserIn] Liao, Jinfeng [verfasserIn] Xing, Guichuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 471 |
---|---|
Übergeordnetes Werk: |
volume:471 |
DOI / URN: |
10.1016/j.cej.2023.144561 |
---|
Katalog-ID: |
ELV061363898 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061363898 | ||
003 | DE-627 | ||
005 | 20231208093238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230808s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.144561 |2 doi | |
035 | |a (DE-627)ELV061363898 | ||
035 | |a (ELSEVIER)S1385-8947(23)03292-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Li, Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. | ||
650 | 4 | |a Inverted perovskite solar cells | |
650 | 4 | |a Passivation | |
650 | 4 | |a Hole-blocking layer | |
650 | 4 | |a High efficiency | |
700 | 1 | |a Zhu, Annan |e verfasserin |0 (orcid)0000-0003-2522-6033 |4 aut | |
700 | 1 | |a Gu, Hao |e verfasserin |4 aut | |
700 | 1 | |a Wang, Bingzhe |e verfasserin |4 aut | |
700 | 1 | |a Wang, Gang |e verfasserin |4 aut | |
700 | 1 | |a Li, Shengwen |e verfasserin |0 (orcid)0000-0002-0182-6029 |4 aut | |
700 | 1 | |a Chen, Shi |e verfasserin |0 (orcid)0000-0002-6889-187X |4 aut | |
700 | 1 | |a Liao, Jinfeng |e verfasserin |4 aut | |
700 | 1 | |a Xing, Guichuan |e verfasserin |0 (orcid)0000-0003-2769-8659 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 471 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:471 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 471 |
author_variant |
w l wl a z az h g hg b w bw g w gw s l sl s c sc j l jl g x gx |
---|---|
matchkey_str |
article:18733212:2023----::oasvtooprvktfltwrstbenefcet |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.144561 doi (DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Li, Wang verfasserin aut Co-passivation of perovskite film towards stable and efficient perovskite solar cell 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency Zhu, Annan verfasserin (orcid)0000-0003-2522-6033 aut Gu, Hao verfasserin aut Wang, Bingzhe verfasserin aut Wang, Gang verfasserin aut Li, Shengwen verfasserin (orcid)0000-0002-0182-6029 aut Chen, Shi verfasserin (orcid)0000-0002-6889-187X aut Liao, Jinfeng verfasserin aut Xing, Guichuan verfasserin (orcid)0000-0003-2769-8659 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
spelling |
10.1016/j.cej.2023.144561 doi (DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Li, Wang verfasserin aut Co-passivation of perovskite film towards stable and efficient perovskite solar cell 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency Zhu, Annan verfasserin (orcid)0000-0003-2522-6033 aut Gu, Hao verfasserin aut Wang, Bingzhe verfasserin aut Wang, Gang verfasserin aut Li, Shengwen verfasserin (orcid)0000-0002-0182-6029 aut Chen, Shi verfasserin (orcid)0000-0002-6889-187X aut Liao, Jinfeng verfasserin aut Xing, Guichuan verfasserin (orcid)0000-0003-2769-8659 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfields_unstemmed |
10.1016/j.cej.2023.144561 doi (DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Li, Wang verfasserin aut Co-passivation of perovskite film towards stable and efficient perovskite solar cell 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency Zhu, Annan verfasserin (orcid)0000-0003-2522-6033 aut Gu, Hao verfasserin aut Wang, Bingzhe verfasserin aut Wang, Gang verfasserin aut Li, Shengwen verfasserin (orcid)0000-0002-0182-6029 aut Chen, Shi verfasserin (orcid)0000-0002-6889-187X aut Liao, Jinfeng verfasserin aut Xing, Guichuan verfasserin (orcid)0000-0003-2769-8659 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfieldsGer |
10.1016/j.cej.2023.144561 doi (DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Li, Wang verfasserin aut Co-passivation of perovskite film towards stable and efficient perovskite solar cell 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency Zhu, Annan verfasserin (orcid)0000-0003-2522-6033 aut Gu, Hao verfasserin aut Wang, Bingzhe verfasserin aut Wang, Gang verfasserin aut Li, Shengwen verfasserin (orcid)0000-0002-0182-6029 aut Chen, Shi verfasserin (orcid)0000-0002-6889-187X aut Liao, Jinfeng verfasserin aut Xing, Guichuan verfasserin (orcid)0000-0003-2769-8659 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
allfieldsSound |
10.1016/j.cej.2023.144561 doi (DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Li, Wang verfasserin aut Co-passivation of perovskite film towards stable and efficient perovskite solar cell 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency Zhu, Annan verfasserin (orcid)0000-0003-2522-6033 aut Gu, Hao verfasserin aut Wang, Bingzhe verfasserin aut Wang, Gang verfasserin aut Li, Shengwen verfasserin (orcid)0000-0002-0182-6029 aut Chen, Shi verfasserin (orcid)0000-0002-6889-187X aut Liao, Jinfeng verfasserin aut Xing, Guichuan verfasserin (orcid)0000-0003-2769-8659 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 471 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:471 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 471 |
language |
English |
source |
Enthalten in The chemical engineering journal 471 volume:471 |
sourceStr |
Enthalten in The chemical engineering journal 471 volume:471 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Li, Wang @@aut@@ Zhu, Annan @@aut@@ Gu, Hao @@aut@@ Wang, Bingzhe @@aut@@ Wang, Gang @@aut@@ Li, Shengwen @@aut@@ Chen, Shi @@aut@@ Liao, Jinfeng @@aut@@ Xing, Guichuan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV061363898 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061363898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231208093238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061363898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)03292-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Co-passivation of perovskite film towards stable and efficient perovskite solar cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverted perovskite solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole-blocking layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Annan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2522-6033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Bingzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shengwen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0182-6029</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6889-187X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Jinfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2769-8659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">471</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:471</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">471</subfield></datafield></record></collection>
|
author |
Li, Wang |
spellingShingle |
Li, Wang ddc 660 bkl 58.10 misc Inverted perovskite solar cells misc Passivation misc Hole-blocking layer misc High efficiency Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
authorStr |
Li, Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Co-passivation of perovskite film towards stable and efficient perovskite solar cell Inverted perovskite solar cells Passivation Hole-blocking layer High efficiency |
topic |
ddc 660 bkl 58.10 misc Inverted perovskite solar cells misc Passivation misc Hole-blocking layer misc High efficiency |
topic_unstemmed |
ddc 660 bkl 58.10 misc Inverted perovskite solar cells misc Passivation misc Hole-blocking layer misc High efficiency |
topic_browse |
ddc 660 bkl 58.10 misc Inverted perovskite solar cells misc Passivation misc Hole-blocking layer misc High efficiency |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
ctrlnum |
(DE-627)ELV061363898 (ELSEVIER)S1385-8947(23)03292-8 |
title_full |
Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
author_sort |
Li, Wang |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Wang Zhu, Annan Gu, Hao Wang, Bingzhe Wang, Gang Li, Shengwen Chen, Shi Liao, Jinfeng Xing, Guichuan |
container_volume |
471 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Wang |
doi_str_mv |
10.1016/j.cej.2023.144561 |
normlink |
(ORCID)0000-0003-2522-6033 (ORCID)0000-0002-0182-6029 (ORCID)0000-0002-6889-187X (ORCID)0000-0003-2769-8659 |
normlink_prefix_str_mv |
(orcid)0000-0003-2522-6033 (orcid)0000-0002-0182-6029 (orcid)0000-0002-6889-187X (orcid)0000-0003-2769-8659 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
co-passivation of perovskite film towards stable and efficient perovskite solar cell |
title_auth |
Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
abstract |
Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. |
abstractGer |
Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. |
abstract_unstemmed |
Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Co-passivation of perovskite film towards stable and efficient perovskite solar cell |
remote_bool |
true |
author2 |
Zhu, Annan Gu, Hao Wang, Bingzhe Wang, Gang Li, Shengwen Chen, Shi Liao, Jinfeng Xing, Guichuan |
author2Str |
Zhu, Annan Gu, Hao Wang, Bingzhe Wang, Gang Li, Shengwen Chen, Shi Liao, Jinfeng Xing, Guichuan |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.144561 |
up_date |
2024-07-06T17:33:20.976Z |
_version_ |
1803851872053755904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061363898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231208093238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230808s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.144561</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061363898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)03292-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Co-passivation of perovskite film towards stable and efficient perovskite solar cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Inverted perovskite solar cells (PSCs) have attracted tremendous attention due to their compatibility in flexible and tandem devices, thus with great commercialization potential. However, abundant crystal defects and energy level mismatch still remain throughout the devices, which cause nonradiative recombination and become the two main issues impeding the performance that need to be solved urgently. In this work, we have adopted a co-passivation strategy by incorporating PEACl (phenethylammonium chloride) into perovskite films and adding PPF (2,8-Bis(diphenyl-phosphoryl)-dibenzo[b,d]furan) in anti-solvent. It is found that PEACl could significantly passivate the defects in the perovskite bulk and grain boundaries. PPF could reinforce the passivation efficacy by forming coordination bond between PPF and Pb2+ (P=O→Pb). It also forms a thin n-type hole-blocking layer between perovskite film and electron transport layer, which increases photo-generated charge carrier lifetimes and decreases nonradiative recombination at carrier transport interfaces. Furthermore, after being co-passivated with PEACl and PPF (PEACl/PPF treated), an energy level gradient is formed between the perovskite and passivated layer, which is conducive to electron extraction and hole blocking, further resulting in less energy loss in the charge transfer process. As a result, the PEACl/PPF treated device obtained a power conversion efficiency (PCE) of 22.70% with an impressive open-circuit voltage (Voc ) of 1.19 V, much higher than the corresponding values (19.51% and 1.06 V) of the control device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverted perovskite solar cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passivation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hole-blocking layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High efficiency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Annan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2522-6033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Bingzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shengwen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0182-6029</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6889-187X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Jinfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2769-8659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">471</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:471</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">471</subfield></datafield></record></collection>
|
score |
7.3996477 |