Iterative graph filtering network for 3D human pose estimation

Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation. By naturally modeling the skeleton structure of the human body as a graph, GCNs are able to capture the spatial relationships between joints and learn an efficient representation of the underlyi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Islam, Zaedul [verfasserIn]

Hamza, A. Ben [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Human pose estimation

Graph regularization

Gauss–Seidel

Modulation

Skip connection

Übergeordnetes Werk:

Enthalten in: Journal of visual communication and image representation - Orlando, Fla. : Academic Press, 1990, 95

Übergeordnetes Werk:

volume:95

DOI / URN:

10.1016/j.jvcir.2023.103908

Katalog-ID:

ELV061768634

Nicht das Richtige dabei?

Schreiben Sie uns!