Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury
The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the micr...
Ausführliche Beschreibung
Autor*in: |
Ren, Zhonghua [verfasserIn] Jiang, Wenliang [verfasserIn] Sun, Na [verfasserIn] Shi, Junfeng [verfasserIn] Zhang, Depu [verfasserIn] Zhang, Jingjing [verfasserIn] Wang, Zhikang [verfasserIn] Yang, Jisong [verfasserIn] Yu, Junbao [verfasserIn] Lv, Zhenbo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Marine environmental research - Amsterdam [u.a.] : Elsevier Science, 1978, 190 |
---|---|
Übergeordnetes Werk: |
volume:190 |
DOI / URN: |
10.1016/j.marenvres.2023.106097 |
---|
Katalog-ID: |
ELV06180391X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06180391X | ||
003 | DE-627 | ||
005 | 20240105093143.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230817s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.marenvres.2023.106097 |2 doi | |
035 | |a (DE-627)ELV06180391X | ||
035 | |a (ELSEVIER)S0141-1136(23)00225-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.94 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
100 | 1 | |a Ren, Zhonghua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. | ||
650 | 4 | |a Estuary of the Yellow River | |
650 | 4 | |a Microbes | |
650 | 4 | |a Microbial function | |
650 | 4 | |a Mercury | |
650 | 4 | |a 16S rRNA sequencing | |
650 | 4 | |a Metagenomics | |
700 | 1 | |a Jiang, Wenliang |e verfasserin |4 aut | |
700 | 1 | |a Sun, Na |e verfasserin |4 aut | |
700 | 1 | |a Shi, Junfeng |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Depu |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jingjing |e verfasserin |4 aut | |
700 | 1 | |a Wang, Zhikang |e verfasserin |4 aut | |
700 | 1 | |a Yang, Jisong |e verfasserin |4 aut | |
700 | 1 | |a Yu, Junbao |e verfasserin |4 aut | |
700 | 1 | |a Lv, Zhenbo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Marine environmental research |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 190 |h Online-Ressource |w (DE-627)308449843 |w (DE-600)1502505-6 |w (DE-576)259484318 |x 1879-0291 |7 nnns |
773 | 1 | 8 | |g volume:190 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.94 |j Meeresbiologie |q VZ |
936 | b | k | |a 43.50 |j Umweltbelastungen |q VZ |
951 | |a AR | ||
952 | |d 190 |
author_variant |
z r zr w j wj n s ns j s js d z dz j z jz z w zw j y jy j y jy z l zl |
---|---|
matchkey_str |
article:18790291:2023----::epneotetutraducinfirbsnelwieetayeiet |
hierarchy_sort_str |
2023 |
bklnumber |
42.94 43.50 |
publishDate |
2023 |
allfields |
10.1016/j.marenvres.2023.106097 doi (DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 DE-627 ger DE-627 rda eng 550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Ren, Zhonghua verfasserin aut Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics Jiang, Wenliang verfasserin aut Sun, Na verfasserin aut Shi, Junfeng verfasserin aut Zhang, Depu verfasserin aut Zhang, Jingjing verfasserin aut Wang, Zhikang verfasserin aut Yang, Jisong verfasserin aut Yu, Junbao verfasserin aut Lv, Zhenbo verfasserin aut Enthalten in Marine environmental research Amsterdam [u.a.] : Elsevier Science, 1978 190 Online-Ressource (DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 1879-0291 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.94 Meeresbiologie VZ 43.50 Umweltbelastungen VZ AR 190 |
spelling |
10.1016/j.marenvres.2023.106097 doi (DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 DE-627 ger DE-627 rda eng 550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Ren, Zhonghua verfasserin aut Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics Jiang, Wenliang verfasserin aut Sun, Na verfasserin aut Shi, Junfeng verfasserin aut Zhang, Depu verfasserin aut Zhang, Jingjing verfasserin aut Wang, Zhikang verfasserin aut Yang, Jisong verfasserin aut Yu, Junbao verfasserin aut Lv, Zhenbo verfasserin aut Enthalten in Marine environmental research Amsterdam [u.a.] : Elsevier Science, 1978 190 Online-Ressource (DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 1879-0291 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.94 Meeresbiologie VZ 43.50 Umweltbelastungen VZ AR 190 |
allfields_unstemmed |
10.1016/j.marenvres.2023.106097 doi (DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 DE-627 ger DE-627 rda eng 550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Ren, Zhonghua verfasserin aut Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics Jiang, Wenliang verfasserin aut Sun, Na verfasserin aut Shi, Junfeng verfasserin aut Zhang, Depu verfasserin aut Zhang, Jingjing verfasserin aut Wang, Zhikang verfasserin aut Yang, Jisong verfasserin aut Yu, Junbao verfasserin aut Lv, Zhenbo verfasserin aut Enthalten in Marine environmental research Amsterdam [u.a.] : Elsevier Science, 1978 190 Online-Ressource (DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 1879-0291 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.94 Meeresbiologie VZ 43.50 Umweltbelastungen VZ AR 190 |
allfieldsGer |
10.1016/j.marenvres.2023.106097 doi (DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 DE-627 ger DE-627 rda eng 550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Ren, Zhonghua verfasserin aut Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics Jiang, Wenliang verfasserin aut Sun, Na verfasserin aut Shi, Junfeng verfasserin aut Zhang, Depu verfasserin aut Zhang, Jingjing verfasserin aut Wang, Zhikang verfasserin aut Yang, Jisong verfasserin aut Yu, Junbao verfasserin aut Lv, Zhenbo verfasserin aut Enthalten in Marine environmental research Amsterdam [u.a.] : Elsevier Science, 1978 190 Online-Ressource (DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 1879-0291 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.94 Meeresbiologie VZ 43.50 Umweltbelastungen VZ AR 190 |
allfieldsSound |
10.1016/j.marenvres.2023.106097 doi (DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 DE-627 ger DE-627 rda eng 550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Ren, Zhonghua verfasserin aut Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics Jiang, Wenliang verfasserin aut Sun, Na verfasserin aut Shi, Junfeng verfasserin aut Zhang, Depu verfasserin aut Zhang, Jingjing verfasserin aut Wang, Zhikang verfasserin aut Yang, Jisong verfasserin aut Yu, Junbao verfasserin aut Lv, Zhenbo verfasserin aut Enthalten in Marine environmental research Amsterdam [u.a.] : Elsevier Science, 1978 190 Online-Ressource (DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 1879-0291 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.94 Meeresbiologie VZ 43.50 Umweltbelastungen VZ AR 190 |
language |
English |
source |
Enthalten in Marine environmental research 190 volume:190 |
sourceStr |
Enthalten in Marine environmental research 190 volume:190 |
format_phy_str_mv |
Article |
bklname |
Meeresbiologie Umweltbelastungen |
institution |
findex.gbv.de |
topic_facet |
Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Marine environmental research |
authorswithroles_txt_mv |
Ren, Zhonghua @@aut@@ Jiang, Wenliang @@aut@@ Sun, Na @@aut@@ Shi, Junfeng @@aut@@ Zhang, Depu @@aut@@ Zhang, Jingjing @@aut@@ Wang, Zhikang @@aut@@ Yang, Jisong @@aut@@ Yu, Junbao @@aut@@ Lv, Zhenbo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
308449843 |
dewey-sort |
3550 |
id |
ELV06180391X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06180391X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240105093143.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230817s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marenvres.2023.106097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06180391X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-1136(23)00225-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Zhonghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estuary of the Yellow River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mercury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenomics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Depu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jisong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Junbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Zhenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine environmental research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">190</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308449843</subfield><subfield code="w">(DE-600)1502505-6</subfield><subfield code="w">(DE-576)259484318</subfield><subfield code="x">1879-0291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.94</subfield><subfield code="j">Meeresbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield></datafield></record></collection>
|
author |
Ren, Zhonghua |
spellingShingle |
Ren, Zhonghua ddc 550 fid BIODIV bkl 42.94 bkl 43.50 misc Estuary of the Yellow River misc Microbes misc Microbial function misc Mercury misc 16S rRNA sequencing misc Metagenomics Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
authorStr |
Ren, Zhonghua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308449843 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0291 |
topic_title |
550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury Estuary of the Yellow River Microbes Microbial function Mercury 16S rRNA sequencing Metagenomics |
topic |
ddc 550 fid BIODIV bkl 42.94 bkl 43.50 misc Estuary of the Yellow River misc Microbes misc Microbial function misc Mercury misc 16S rRNA sequencing misc Metagenomics |
topic_unstemmed |
ddc 550 fid BIODIV bkl 42.94 bkl 43.50 misc Estuary of the Yellow River misc Microbes misc Microbial function misc Mercury misc 16S rRNA sequencing misc Metagenomics |
topic_browse |
ddc 550 fid BIODIV bkl 42.94 bkl 43.50 misc Estuary of the Yellow River misc Microbes misc Microbial function misc Mercury misc 16S rRNA sequencing misc Metagenomics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Marine environmental research |
hierarchy_parent_id |
308449843 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Marine environmental research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308449843 (DE-600)1502505-6 (DE-576)259484318 |
title |
Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
ctrlnum |
(DE-627)ELV06180391X (ELSEVIER)S0141-1136(23)00225-8 |
title_full |
Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
author_sort |
Ren, Zhonghua |
journal |
Marine environmental research |
journalStr |
Marine environmental research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Ren, Zhonghua Jiang, Wenliang Sun, Na Shi, Junfeng Zhang, Depu Zhang, Jingjing Wang, Zhikang Yang, Jisong Yu, Junbao Lv, Zhenbo |
container_volume |
190 |
class |
550 VZ BIODIV DE-30 fid 42.94 bkl 43.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ren, Zhonghua |
doi_str_mv |
10.1016/j.marenvres.2023.106097 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
responses of the structure and function of microbes in yellow river estuary sediments to different levels of mercury |
title_auth |
Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
abstract |
The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. |
abstractGer |
The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. |
abstract_unstemmed |
The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury |
remote_bool |
true |
author2 |
Jiang, Wenliang Sun, Na Shi, Junfeng Zhang, Depu Zhang, Jingjing Wang, Zhikang Yang, Jisong Yu, Junbao Lv, Zhenbo |
author2Str |
Jiang, Wenliang Sun, Na Shi, Junfeng Zhang, Depu Zhang, Jingjing Wang, Zhikang Yang, Jisong Yu, Junbao Lv, Zhenbo |
ppnlink |
308449843 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.marenvres.2023.106097 |
up_date |
2024-07-06T18:04:06.515Z |
_version_ |
1803853807240609792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06180391X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240105093143.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230817s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.marenvres.2023.106097</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06180391X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-1136(23)00225-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Zhonghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4 +), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estuary of the Yellow River</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mercury</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">16S rRNA sequencing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metagenomics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Wenliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Junfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Depu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jisong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Junbao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lv, Zhenbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Marine environmental research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">190</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308449843</subfield><subfield code="w">(DE-600)1502505-6</subfield><subfield code="w">(DE-576)259484318</subfield><subfield code="x">1879-0291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.94</subfield><subfield code="j">Meeresbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="j">Umweltbelastungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield></datafield></record></collection>
|
score |
7.401865 |