Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review
Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the...
Ausführliche Beschreibung
Autor*in: |
Wang, Hannah Szu-Han [verfasserIn] Yao, Yuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Resources, conservation and recycling - Amsterdam [u.a.] : Elsevier Science, 1988, 190 |
---|---|
Übergeordnetes Werk: |
volume:190 |
DOI / URN: |
10.1016/j.resconrec.2022.106847 |
---|
Katalog-ID: |
ELV061829897 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061829897 | ||
003 | DE-627 | ||
005 | 20230927091953.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230818s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.resconrec.2022.106847 |2 doi | |
035 | |a (DE-627)ELV061829897 | ||
035 | |a (ELSEVIER)S0921-3449(22)00679-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 43.33 |2 bkl | ||
084 | |a 58.53 |2 bkl | ||
084 | |a 83.63 |2 bkl | ||
100 | 1 | |a Wang, Hannah Szu-Han |e verfasserin |4 aut | |
245 | 1 | 0 | |a Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. | ||
650 | 4 | |a Biomass-derived material | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Sustainability | |
650 | 4 | |a Water | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Biochar | |
700 | 1 | |a Yao, Yuan |e verfasserin |0 (orcid)0000-0001-9359-2030 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Resources, conservation and recycling |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 190 |h Online-Ressource |w (DE-627)306591359 |w (DE-600)1498716-8 |w (DE-576)259484199 |7 nnns |
773 | 1 | 8 | |g volume:190 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 43.33 |j Umweltfreundliche Nutzung natürlicher Ressourcen |q VZ |
936 | b | k | |a 58.53 |j Abfallwirtschaft |q VZ |
936 | b | k | |a 83.63 |j Volkswirtschaftliche Ressourcen |j Umweltökonomie |q VZ |
951 | |a AR | ||
952 | |d 190 |
author_variant |
h s h w hsh hshw y y yy |
---|---|
matchkey_str |
wanghannahszuhanyaoyuan:2022----:ahnlannfrutialdvlpetnapiainoboasnboaseiecroaeumtras |
hierarchy_sort_str |
2022 |
bklnumber |
43.33 58.53 83.63 |
publishDate |
2022 |
allfields |
10.1016/j.resconrec.2022.106847 doi (DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 DE-627 ger DE-627 rda eng 690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Wang, Hannah Szu-Han verfasserin aut Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. Biomass-derived material Machine learning Sustainability Water Agriculture Biochar Yao, Yuan verfasserin (orcid)0000-0001-9359-2030 aut Enthalten in Resources, conservation and recycling Amsterdam [u.a.] : Elsevier Science, 1988 190 Online-Ressource (DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.33 Umweltfreundliche Nutzung natürlicher Ressourcen VZ 58.53 Abfallwirtschaft VZ 83.63 Volkswirtschaftliche Ressourcen Umweltökonomie VZ AR 190 |
spelling |
10.1016/j.resconrec.2022.106847 doi (DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 DE-627 ger DE-627 rda eng 690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Wang, Hannah Szu-Han verfasserin aut Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. Biomass-derived material Machine learning Sustainability Water Agriculture Biochar Yao, Yuan verfasserin (orcid)0000-0001-9359-2030 aut Enthalten in Resources, conservation and recycling Amsterdam [u.a.] : Elsevier Science, 1988 190 Online-Ressource (DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.33 Umweltfreundliche Nutzung natürlicher Ressourcen VZ 58.53 Abfallwirtschaft VZ 83.63 Volkswirtschaftliche Ressourcen Umweltökonomie VZ AR 190 |
allfields_unstemmed |
10.1016/j.resconrec.2022.106847 doi (DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 DE-627 ger DE-627 rda eng 690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Wang, Hannah Szu-Han verfasserin aut Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. Biomass-derived material Machine learning Sustainability Water Agriculture Biochar Yao, Yuan verfasserin (orcid)0000-0001-9359-2030 aut Enthalten in Resources, conservation and recycling Amsterdam [u.a.] : Elsevier Science, 1988 190 Online-Ressource (DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.33 Umweltfreundliche Nutzung natürlicher Ressourcen VZ 58.53 Abfallwirtschaft VZ 83.63 Volkswirtschaftliche Ressourcen Umweltökonomie VZ AR 190 |
allfieldsGer |
10.1016/j.resconrec.2022.106847 doi (DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 DE-627 ger DE-627 rda eng 690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Wang, Hannah Szu-Han verfasserin aut Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. Biomass-derived material Machine learning Sustainability Water Agriculture Biochar Yao, Yuan verfasserin (orcid)0000-0001-9359-2030 aut Enthalten in Resources, conservation and recycling Amsterdam [u.a.] : Elsevier Science, 1988 190 Online-Ressource (DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.33 Umweltfreundliche Nutzung natürlicher Ressourcen VZ 58.53 Abfallwirtschaft VZ 83.63 Volkswirtschaftliche Ressourcen Umweltökonomie VZ AR 190 |
allfieldsSound |
10.1016/j.resconrec.2022.106847 doi (DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 DE-627 ger DE-627 rda eng 690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Wang, Hannah Szu-Han verfasserin aut Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. Biomass-derived material Machine learning Sustainability Water Agriculture Biochar Yao, Yuan verfasserin (orcid)0000-0001-9359-2030 aut Enthalten in Resources, conservation and recycling Amsterdam [u.a.] : Elsevier Science, 1988 190 Online-Ressource (DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 nnns volume:190 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 43.33 Umweltfreundliche Nutzung natürlicher Ressourcen VZ 58.53 Abfallwirtschaft VZ 83.63 Volkswirtschaftliche Ressourcen Umweltökonomie VZ AR 190 |
language |
English |
source |
Enthalten in Resources, conservation and recycling 190 volume:190 |
sourceStr |
Enthalten in Resources, conservation and recycling 190 volume:190 |
format_phy_str_mv |
Article |
bklname |
Umweltfreundliche Nutzung natürlicher Ressourcen Abfallwirtschaft Volkswirtschaftliche Ressourcen Umweltökonomie |
institution |
findex.gbv.de |
topic_facet |
Biomass-derived material Machine learning Sustainability Water Agriculture Biochar |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Resources, conservation and recycling |
authorswithroles_txt_mv |
Wang, Hannah Szu-Han @@aut@@ Yao, Yuan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306591359 |
dewey-sort |
3690 |
id |
ELV061829897 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061829897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927091953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230818s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.resconrec.2022.106847</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061829897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-3449(22)00679-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Hannah Szu-Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass-derived material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9359-2030</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Resources, conservation and recycling</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">190</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591359</subfield><subfield code="w">(DE-600)1498716-8</subfield><subfield code="w">(DE-576)259484199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.33</subfield><subfield code="j">Umweltfreundliche Nutzung natürlicher Ressourcen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.63</subfield><subfield code="j">Volkswirtschaftliche Ressourcen</subfield><subfield code="j">Umweltökonomie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield></datafield></record></collection>
|
author |
Wang, Hannah Szu-Han |
spellingShingle |
Wang, Hannah Szu-Han ddc 690 bkl 43.33 bkl 58.53 bkl 83.63 misc Biomass-derived material misc Machine learning misc Sustainability misc Water misc Agriculture misc Biochar Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
authorStr |
Wang, Hannah Szu-Han |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591359 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 43.33 bkl 58.53 bkl 83.63 bkl Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review Biomass-derived material Machine learning Sustainability Water Agriculture Biochar |
topic |
ddc 690 bkl 43.33 bkl 58.53 bkl 83.63 misc Biomass-derived material misc Machine learning misc Sustainability misc Water misc Agriculture misc Biochar |
topic_unstemmed |
ddc 690 bkl 43.33 bkl 58.53 bkl 83.63 misc Biomass-derived material misc Machine learning misc Sustainability misc Water misc Agriculture misc Biochar |
topic_browse |
ddc 690 bkl 43.33 bkl 58.53 bkl 83.63 misc Biomass-derived material misc Machine learning misc Sustainability misc Water misc Agriculture misc Biochar |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Resources, conservation and recycling |
hierarchy_parent_id |
306591359 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Resources, conservation and recycling |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591359 (DE-600)1498716-8 (DE-576)259484199 |
title |
Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
ctrlnum |
(DE-627)ELV061829897 (ELSEVIER)S0921-3449(22)00679-6 |
title_full |
Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
author_sort |
Wang, Hannah Szu-Han |
journal |
Resources, conservation and recycling |
journalStr |
Resources, conservation and recycling |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Hannah Szu-Han Yao, Yuan |
container_volume |
190 |
class |
690 VZ 43.33 bkl 58.53 bkl 83.63 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Hannah Szu-Han |
doi_str_mv |
10.1016/j.resconrec.2022.106847 |
normlink |
(ORCID)0000-0001-9359-2030 |
normlink_prefix_str_mv |
(orcid)0000-0001-9359-2030 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: a review |
title_auth |
Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
abstract |
Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. |
abstractGer |
Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. |
abstract_unstemmed |
Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review |
remote_bool |
true |
author2 |
Yao, Yuan |
author2Str |
Yao, Yuan |
ppnlink |
306591359 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.resconrec.2022.106847 |
up_date |
2024-07-06T18:05:56.929Z |
_version_ |
1803853923018080256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061829897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927091953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230818s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.resconrec.2022.106847</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061829897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-3449(22)00679-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Hannah Szu-Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biomass-derived materials (BDM) have broad applications in water and agricultural systems. As an emerging tool, Machine learning (ML) has been applied to BDM systems to address material, process, and supply chain design challenges. This paper reviewed 53 papers published since 2008 to understand the capabilities, current limitations, and future potentials of ML in supporting sustainable development and applications of BDM. Previous ML applications were classified into three categories based on their objectives – material and process design, end-use performance prediction, and sustainability assessment. These ML applications focus on identifying critical factors for optimizing BDM systems, predicting material features and performances, reverse engineering, and addressing data challenges for sustainability assessments. BDM datasets show large variations, and ∼75% of them possess < 600 data points. Ensemble models and state-of-the-art neural networks (NNs) perform and generalize well on such datasets. Limitations for scaling up ML for BDM systems lie in the low interpretability of the ensemble and NN models and the lack of studies in sustainability assessment that consider geo-temporal dynamics. A workflow is recommended for future ML studies for BDM systems. More research is needed to explore ML applications for sustainable development, assessment, and optimization of BDM systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomass-derived material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9359-2030</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Resources, conservation and recycling</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">190</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591359</subfield><subfield code="w">(DE-600)1498716-8</subfield><subfield code="w">(DE-576)259484199</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.33</subfield><subfield code="j">Umweltfreundliche Nutzung natürlicher Ressourcen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.63</subfield><subfield code="j">Volkswirtschaftliche Ressourcen</subfield><subfield code="j">Umweltökonomie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield></datafield></record></collection>
|
score |
7.4022093 |