A simple and efficient graph Transformer architecture for molecular properties prediction

Graph Transformer architecture started to catch fire in molecular properties prediction due to its ability to represent complex interactions between all nodes. However, the self-attention mechanism in Transformer encoder part transforms the graph data into a fully-connected graph for graph represent...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Lu, Yunhua [verfasserIn]

Zeng, Kangli [verfasserIn]

Zhang, Qingwei [verfasserIn]

Zhang, Jun'an [verfasserIn]

Cai, Lin [verfasserIn]

Tian, Jiangling [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Graph neural network

Graph Transformer

Graph representation

Molecular properties prediction

Übergeordnetes Werk:

Enthalten in: Chemical engineering science - Amsterdam [u.a.] : Elsevier Science, 1951, 280

Übergeordnetes Werk:

volume:280

DOI / URN:

10.1016/j.ces.2023.119057

Katalog-ID:

ELV061837679

Nicht das Richtige dabei?

Schreiben Sie uns!