Integral measurements of plural and multiple scattering of electrons with energies between
Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times lar...
Ausführliche Beschreibung
Autor*in: |
Barros, S.F. [verfasserIn] Petri, A.R. [verfasserIn] Malafronte, A.A. [verfasserIn] Fernández-Varea, J.M. [verfasserIn] Maidana, N.L. [verfasserIn] Martins, M.N. [verfasserIn] Vanin, V.R. [verfasserIn] Mangiarotti, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Radiation physics and chemistry - Oxford [u.a.] : Pergamon Press, 1977, 212 |
---|---|
Übergeordnetes Werk: |
volume:212 |
DOI / URN: |
10.1016/j.radphyschem.2023.111051 |
---|
Katalog-ID: |
ELV061883360 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061883360 | ||
003 | DE-627 | ||
005 | 20231116093129.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230819s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.radphyschem.2023.111051 |2 doi | |
035 | |a (DE-627)ELV061883360 | ||
035 | |a (ELSEVIER)S0969-806X(23)00296-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |a 530 |q VZ |
084 | |a 35.15 |2 bkl | ||
084 | |a 33.40 |2 bkl | ||
100 | 1 | |a Barros, S.F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Integral measurements of plural and multiple scattering of electrons with energies between |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. | ||
650 | 4 | |a Multiple scattering | |
650 | 4 | |a Goudsmit–Saunderson theory | |
650 | 4 | |a Lewis theory | |
650 | 4 | |a Monte Carlo simulations | |
650 | 4 | |a PENELOPE-2018 | |
700 | 1 | |a Petri, A.R. |e verfasserin |4 aut | |
700 | 1 | |a Malafronte, A.A. |e verfasserin |4 aut | |
700 | 1 | |a Fernández-Varea, J.M. |e verfasserin |4 aut | |
700 | 1 | |a Maidana, N.L. |e verfasserin |4 aut | |
700 | 1 | |a Martins, M.N. |e verfasserin |4 aut | |
700 | 1 | |a Vanin, V.R. |e verfasserin |4 aut | |
700 | 1 | |a Mangiarotti, A. |e verfasserin |0 (orcid)0000-0001-7837-6057 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Radiation physics and chemistry |d Oxford [u.a.] : Pergamon Press, 1977 |g 212 |h Online-Ressource |w (DE-627)320596486 |w (DE-600)2019621-0 |w (DE-576)251938263 |x 1878-1020 |7 nnns |
773 | 1 | 8 | |g volume:212 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.15 |j Radiochemie |q VZ |
936 | b | k | |a 33.40 |j Kernphysik |q VZ |
951 | |a AR | ||
952 | |d 212 |
author_variant |
s b sb a p ap a m am j f v jfv n m nm m m mm v v vv a m am |
---|---|
matchkey_str |
article:18781020:2023----::nerlesrmnsflrlnmlilsatrnoeet |
hierarchy_sort_str |
2023 |
bklnumber |
35.15 33.40 |
publishDate |
2023 |
allfields |
10.1016/j.radphyschem.2023.111051 doi (DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 DE-627 ger DE-627 rda eng 540 530 VZ 35.15 bkl 33.40 bkl Barros, S.F. verfasserin aut Integral measurements of plural and multiple scattering of electrons with energies between 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 Petri, A.R. verfasserin aut Malafronte, A.A. verfasserin aut Fernández-Varea, J.M. verfasserin aut Maidana, N.L. verfasserin aut Martins, M.N. verfasserin aut Vanin, V.R. verfasserin aut Mangiarotti, A. verfasserin (orcid)0000-0001-7837-6057 aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 212 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie VZ 33.40 Kernphysik VZ AR 212 |
spelling |
10.1016/j.radphyschem.2023.111051 doi (DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 DE-627 ger DE-627 rda eng 540 530 VZ 35.15 bkl 33.40 bkl Barros, S.F. verfasserin aut Integral measurements of plural and multiple scattering of electrons with energies between 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 Petri, A.R. verfasserin aut Malafronte, A.A. verfasserin aut Fernández-Varea, J.M. verfasserin aut Maidana, N.L. verfasserin aut Martins, M.N. verfasserin aut Vanin, V.R. verfasserin aut Mangiarotti, A. verfasserin (orcid)0000-0001-7837-6057 aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 212 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie VZ 33.40 Kernphysik VZ AR 212 |
allfields_unstemmed |
10.1016/j.radphyschem.2023.111051 doi (DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 DE-627 ger DE-627 rda eng 540 530 VZ 35.15 bkl 33.40 bkl Barros, S.F. verfasserin aut Integral measurements of plural and multiple scattering of electrons with energies between 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 Petri, A.R. verfasserin aut Malafronte, A.A. verfasserin aut Fernández-Varea, J.M. verfasserin aut Maidana, N.L. verfasserin aut Martins, M.N. verfasserin aut Vanin, V.R. verfasserin aut Mangiarotti, A. verfasserin (orcid)0000-0001-7837-6057 aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 212 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie VZ 33.40 Kernphysik VZ AR 212 |
allfieldsGer |
10.1016/j.radphyschem.2023.111051 doi (DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 DE-627 ger DE-627 rda eng 540 530 VZ 35.15 bkl 33.40 bkl Barros, S.F. verfasserin aut Integral measurements of plural and multiple scattering of electrons with energies between 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 Petri, A.R. verfasserin aut Malafronte, A.A. verfasserin aut Fernández-Varea, J.M. verfasserin aut Maidana, N.L. verfasserin aut Martins, M.N. verfasserin aut Vanin, V.R. verfasserin aut Mangiarotti, A. verfasserin (orcid)0000-0001-7837-6057 aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 212 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie VZ 33.40 Kernphysik VZ AR 212 |
allfieldsSound |
10.1016/j.radphyschem.2023.111051 doi (DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 DE-627 ger DE-627 rda eng 540 530 VZ 35.15 bkl 33.40 bkl Barros, S.F. verfasserin aut Integral measurements of plural and multiple scattering of electrons with energies between 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 Petri, A.R. verfasserin aut Malafronte, A.A. verfasserin aut Fernández-Varea, J.M. verfasserin aut Maidana, N.L. verfasserin aut Martins, M.N. verfasserin aut Vanin, V.R. verfasserin aut Mangiarotti, A. verfasserin (orcid)0000-0001-7837-6057 aut Enthalten in Radiation physics and chemistry Oxford [u.a.] : Pergamon Press, 1977 212 Online-Ressource (DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 1878-1020 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.15 Radiochemie VZ 33.40 Kernphysik VZ AR 212 |
language |
English |
source |
Enthalten in Radiation physics and chemistry 212 volume:212 |
sourceStr |
Enthalten in Radiation physics and chemistry 212 volume:212 |
format_phy_str_mv |
Article |
bklname |
Radiochemie Kernphysik |
institution |
findex.gbv.de |
topic_facet |
Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Radiation physics and chemistry |
authorswithroles_txt_mv |
Barros, S.F. @@aut@@ Petri, A.R. @@aut@@ Malafronte, A.A. @@aut@@ Fernández-Varea, J.M. @@aut@@ Maidana, N.L. @@aut@@ Martins, M.N. @@aut@@ Vanin, V.R. @@aut@@ Mangiarotti, A. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320596486 |
dewey-sort |
3540 |
id |
ELV061883360 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061883360</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231116093129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230819s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radphyschem.2023.111051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061883360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0969-806X(23)00296-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barros, S.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral measurements of plural and multiple scattering of electrons with energies between</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple scattering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goudsmit–Saunderson theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lewis theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PENELOPE-2018</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petri, A.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malafronte, A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-Varea, J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maidana, N.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martins, M.N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanin, V.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangiarotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7837-6057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation physics and chemistry</subfield><subfield code="d">Oxford [u.a.] : Pergamon Press, 1977</subfield><subfield code="g">212</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320596486</subfield><subfield code="w">(DE-600)2019621-0</subfield><subfield code="w">(DE-576)251938263</subfield><subfield code="x">1878-1020</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:212</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.15</subfield><subfield code="j">Radiochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">212</subfield></datafield></record></collection>
|
author |
Barros, S.F. |
spellingShingle |
Barros, S.F. ddc 540 bkl 35.15 bkl 33.40 misc Multiple scattering misc Goudsmit–Saunderson theory misc Lewis theory misc Monte Carlo simulations misc PENELOPE-2018 Integral measurements of plural and multiple scattering of electrons with energies between |
authorStr |
Barros, S.F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320596486 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1878-1020 |
topic_title |
540 530 VZ 35.15 bkl 33.40 bkl Integral measurements of plural and multiple scattering of electrons with energies between Multiple scattering Goudsmit–Saunderson theory Lewis theory Monte Carlo simulations PENELOPE-2018 |
topic |
ddc 540 bkl 35.15 bkl 33.40 misc Multiple scattering misc Goudsmit–Saunderson theory misc Lewis theory misc Monte Carlo simulations misc PENELOPE-2018 |
topic_unstemmed |
ddc 540 bkl 35.15 bkl 33.40 misc Multiple scattering misc Goudsmit–Saunderson theory misc Lewis theory misc Monte Carlo simulations misc PENELOPE-2018 |
topic_browse |
ddc 540 bkl 35.15 bkl 33.40 misc Multiple scattering misc Goudsmit–Saunderson theory misc Lewis theory misc Monte Carlo simulations misc PENELOPE-2018 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Radiation physics and chemistry |
hierarchy_parent_id |
320596486 |
dewey-tens |
540 - Chemistry 530 - Physics |
hierarchy_top_title |
Radiation physics and chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320596486 (DE-600)2019621-0 (DE-576)251938263 |
title |
Integral measurements of plural and multiple scattering of electrons with energies between |
ctrlnum |
(DE-627)ELV061883360 (ELSEVIER)S0969-806X(23)00296-7 |
title_full |
Integral measurements of plural and multiple scattering of electrons with energies between |
author_sort |
Barros, S.F. |
journal |
Radiation physics and chemistry |
journalStr |
Radiation physics and chemistry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Barros, S.F. Petri, A.R. Malafronte, A.A. Fernández-Varea, J.M. Maidana, N.L. Martins, M.N. Vanin, V.R. Mangiarotti, A. |
container_volume |
212 |
class |
540 530 VZ 35.15 bkl 33.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Barros, S.F. |
doi_str_mv |
10.1016/j.radphyschem.2023.111051 |
normlink |
(ORCID)0000-0001-7837-6057 |
normlink_prefix_str_mv |
(orcid)0000-0001-7837-6057 |
dewey-full |
540 530 |
author2-role |
verfasserin |
title_sort |
integral measurements of plural and multiple scattering of electrons with energies between |
title_auth |
Integral measurements of plural and multiple scattering of electrons with energies between |
abstract |
Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. |
abstractGer |
Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. |
abstract_unstemmed |
Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_165 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Integral measurements of plural and multiple scattering of electrons with energies between |
remote_bool |
true |
author2 |
Petri, A.R. Malafronte, A.A. Fernández-Varea, J.M. Maidana, N.L. Martins, M.N. Vanin, V.R. Mangiarotti, A. |
author2Str |
Petri, A.R. Malafronte, A.A. Fernández-Varea, J.M. Maidana, N.L. Martins, M.N. Vanin, V.R. Mangiarotti, A. |
ppnlink |
320596486 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.radphyschem.2023.111051 |
up_date |
2024-07-06T18:09:54.725Z |
_version_ |
1803854172364210176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061883360</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231116093129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230819s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.radphyschem.2023.111051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061883360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0969-806X(23)00296-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barros, S.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral measurements of plural and multiple scattering of electrons with energies between</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Angle-integrated multiple-scattering distributions are provided for electrons with energies between 10 and 100 keV hitting Al, Cu, Sn, and Au foils. The present results differ from those published in part I (Barros et al., 2023) because the targets have ≈ 10 times larger mass thicknesses of the order of ≈ 1.5 to 5 mg/cm2. It is then possible to follow, by increasing the beam energy, the behaviour around the point of punch-through of the electrons (when a small fraction begins to cross the target, between ≈ 30 to 60 keV depending on the material and thickness) up to 100 keV, where absorption in the target itself is small. The measurements were performed together with those of part I employing the same setup. The electrons have been collected with a Faraday cup, accepting the most frontal scattering angles, and a ring, that surrounds the entrance of the cup, still covering rather forward deflections. The normalisation is provided by measuring the current in the chamber, which close-up completely the remaining solid angle, and the electrons stopped within the target, which is also electrically connected to the chamber. The same corrections for the electrons backscattered by the Faraday cup and the ring found in part I are applied. The measurements, all referring to homogeneous targets, are compared with the predictions of the Goudsmit–Saunderson and Lewis analytical approaches and to the PENELOPE-2018 Monte Carlo code to take into account, as far as possible, the effect of the energy loss. In all cases, the elastic differential cross sections are those of the ICRU Report 77, ensuing from a partial-wave solution of the Dirac equation in a self-consistent isolated-atom central potential. While the analytical calculations do not work, in general, for the thick targets, good agreement is found between simulations and measurements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple scattering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goudsmit–Saunderson theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lewis theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PENELOPE-2018</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petri, A.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malafronte, A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fernández-Varea, J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maidana, N.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martins, M.N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vanin, V.R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangiarotti, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7837-6057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Radiation physics and chemistry</subfield><subfield code="d">Oxford [u.a.] : Pergamon Press, 1977</subfield><subfield code="g">212</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320596486</subfield><subfield code="w">(DE-600)2019621-0</subfield><subfield code="w">(DE-576)251938263</subfield><subfield code="x">1878-1020</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:212</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.15</subfield><subfield code="j">Radiochemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">212</subfield></datafield></record></collection>
|
score |
7.4026165 |