Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record
Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which facto...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jikai [verfasserIn] Mazurowski, Maciej A. [verfasserIn] Grimm, Lars J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: European journal of radiology - Amsterdam [u.a.] : Elsevier Science, 1990, 166 |
---|---|
Übergeordnetes Werk: |
volume:166 |
DOI / URN: |
10.1016/j.ejrad.2023.110979 |
---|
Katalog-ID: |
ELV061970409 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV061970409 | ||
003 | DE-627 | ||
005 | 20230927074935.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230820s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejrad.2023.110979 |2 doi | |
035 | |a (DE-627)ELV061970409 | ||
035 | |a (ELSEVIER)S0720-048X(23)00293-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.64 |2 bkl | ||
100 | 1 | |a Zhang, Jikai |e verfasserin |0 (orcid)0000-0003-2247-0639 |4 aut | |
245 | 1 | 0 | |a Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. | ||
650 | 4 | |a Screening mammography | |
650 | 4 | |a Digital breast tomosynthesis | |
650 | 4 | |a Recall | |
650 | 4 | |a Anxiety | |
700 | 1 | |a Mazurowski, Maciej A. |e verfasserin |4 aut | |
700 | 1 | |a Grimm, Lars J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European journal of radiology |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 166 |h Online-Ressource |w (DE-627)32044483X |w (DE-600)2005350-2 |w (DE-576)099718138 |x 1872-7727 |7 nnns |
773 | 1 | 8 | |g volume:166 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.64 |j Radiologie |q VZ |
951 | |a AR | ||
952 | |d 166 |
author_variant |
j z jz m a m ma mam l j g lj ljg |
---|---|
matchkey_str |
article:18727727:2023----::esbltopeitnacenndgtlratooyteircluigetrsxrce |
hierarchy_sort_str |
2023 |
bklnumber |
44.64 |
publishDate |
2023 |
allfields |
10.1016/j.ejrad.2023.110979 doi (DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 DE-627 ger DE-627 rda eng 610 VZ 44.64 bkl Zhang, Jikai verfasserin (orcid)0000-0003-2247-0639 aut Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. Screening mammography Digital breast tomosynthesis Recall Anxiety Mazurowski, Maciej A. verfasserin aut Grimm, Lars J. verfasserin aut Enthalten in European journal of radiology Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 1872-7727 nnns volume:166 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.64 Radiologie VZ AR 166 |
spelling |
10.1016/j.ejrad.2023.110979 doi (DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 DE-627 ger DE-627 rda eng 610 VZ 44.64 bkl Zhang, Jikai verfasserin (orcid)0000-0003-2247-0639 aut Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. Screening mammography Digital breast tomosynthesis Recall Anxiety Mazurowski, Maciej A. verfasserin aut Grimm, Lars J. verfasserin aut Enthalten in European journal of radiology Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 1872-7727 nnns volume:166 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.64 Radiologie VZ AR 166 |
allfields_unstemmed |
10.1016/j.ejrad.2023.110979 doi (DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 DE-627 ger DE-627 rda eng 610 VZ 44.64 bkl Zhang, Jikai verfasserin (orcid)0000-0003-2247-0639 aut Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. Screening mammography Digital breast tomosynthesis Recall Anxiety Mazurowski, Maciej A. verfasserin aut Grimm, Lars J. verfasserin aut Enthalten in European journal of radiology Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 1872-7727 nnns volume:166 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.64 Radiologie VZ AR 166 |
allfieldsGer |
10.1016/j.ejrad.2023.110979 doi (DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 DE-627 ger DE-627 rda eng 610 VZ 44.64 bkl Zhang, Jikai verfasserin (orcid)0000-0003-2247-0639 aut Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. Screening mammography Digital breast tomosynthesis Recall Anxiety Mazurowski, Maciej A. verfasserin aut Grimm, Lars J. verfasserin aut Enthalten in European journal of radiology Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 1872-7727 nnns volume:166 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.64 Radiologie VZ AR 166 |
allfieldsSound |
10.1016/j.ejrad.2023.110979 doi (DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 DE-627 ger DE-627 rda eng 610 VZ 44.64 bkl Zhang, Jikai verfasserin (orcid)0000-0003-2247-0639 aut Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. Screening mammography Digital breast tomosynthesis Recall Anxiety Mazurowski, Maciej A. verfasserin aut Grimm, Lars J. verfasserin aut Enthalten in European journal of radiology Amsterdam [u.a.] : Elsevier Science, 1990 166 Online-Ressource (DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 1872-7727 nnns volume:166 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 44.64 Radiologie VZ AR 166 |
language |
English |
source |
Enthalten in European journal of radiology 166 volume:166 |
sourceStr |
Enthalten in European journal of radiology 166 volume:166 |
format_phy_str_mv |
Article |
bklname |
Radiologie |
institution |
findex.gbv.de |
topic_facet |
Screening mammography Digital breast tomosynthesis Recall Anxiety |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
European journal of radiology |
authorswithroles_txt_mv |
Zhang, Jikai @@aut@@ Mazurowski, Maciej A. @@aut@@ Grimm, Lars J. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
32044483X |
dewey-sort |
3610 |
id |
ELV061970409 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061970409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074935.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230820s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejrad.2023.110979</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061970409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0720-048X(23)00293-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jikai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2247-0639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screening mammography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital breast tomosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anxiety</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazurowski, Maciej A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grimm, Lars J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of radiology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">166</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32044483X</subfield><subfield code="w">(DE-600)2005350-2</subfield><subfield code="w">(DE-576)099718138</subfield><subfield code="x">1872-7727</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield></datafield></record></collection>
|
author |
Zhang, Jikai |
spellingShingle |
Zhang, Jikai ddc 610 bkl 44.64 misc Screening mammography misc Digital breast tomosynthesis misc Recall misc Anxiety Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
authorStr |
Zhang, Jikai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32044483X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7727 |
topic_title |
610 VZ 44.64 bkl Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record Screening mammography Digital breast tomosynthesis Recall Anxiety |
topic |
ddc 610 bkl 44.64 misc Screening mammography misc Digital breast tomosynthesis misc Recall misc Anxiety |
topic_unstemmed |
ddc 610 bkl 44.64 misc Screening mammography misc Digital breast tomosynthesis misc Recall misc Anxiety |
topic_browse |
ddc 610 bkl 44.64 misc Screening mammography misc Digital breast tomosynthesis misc Recall misc Anxiety |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European journal of radiology |
hierarchy_parent_id |
32044483X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
European journal of radiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32044483X (DE-600)2005350-2 (DE-576)099718138 |
title |
Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
ctrlnum |
(DE-627)ELV061970409 (ELSEVIER)S0720-048X(23)00293-0 |
title_full |
Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
author_sort |
Zhang, Jikai |
journal |
European journal of radiology |
journalStr |
European journal of radiology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Jikai Mazurowski, Maciej A. Grimm, Lars J. |
container_volume |
166 |
class |
610 VZ 44.64 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Jikai |
doi_str_mv |
10.1016/j.ejrad.2023.110979 |
normlink |
(ORCID)0000-0003-2247-0639 |
normlink_prefix_str_mv |
(orcid)0000-0003-2247-0639 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
title_auth |
Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
abstract |
Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. |
abstractGer |
Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. |
abstract_unstemmed |
Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record |
remote_bool |
true |
author2 |
Mazurowski, Maciej A. Grimm, Lars J. |
author2Str |
Mazurowski, Maciej A. Grimm, Lars J. |
ppnlink |
32044483X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ejrad.2023.110979 |
up_date |
2024-07-06T18:16:06.953Z |
_version_ |
1803854562674606080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV061970409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074935.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230820s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejrad.2023.110979</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV061970409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0720-048X(23)00293-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jikai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2247-0639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility of predicting a screening digital breast tomosynthesis recall using features extracted from the electronic medical record</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose: Tools to predict a screening mammogram recall at the time of scheduling could improve patient care. We extracted patient demographic and breast care history information within the electronic medical record (EMR) for women undergoing digital breast tomosynthesis (DBT) to identify which factors were associated with a screening recall recommendation.Method: In 2018, 21,543 women aged 40 years or greater who underwent screening DBT at our institution were identified. Demographic information and breast care factors were extracted automatically from the EMR. The primary outcome was a screening recall recommendation of BI-RADS 0. A multivariable logistic regression model was built and included age, race, ethnicity groups, family breast cancer history, personal breast cancer history, surgical breast cancer history, recall history, and days since last available screening mammogram.Results: Multiple factors were associated with a recall on the multivariable model: history of breast cancer surgery (OR: 2.298, 95% CI: 1.854, 2.836); prior recall within the last five years (vs no prior, OR: 0.768, 95% CI: 0.687, 0.858); prior screening mammogram within 0–18 months (vs no prior, OR: 0.601, 95% CI: 0.520, 0.691), prior screening mammogram within 18–30 months (vs no prior, OR: 0.676, 95% CI: 0.520, 0.691); and age (normalized OR: 0.723, 95% CI: 0.690, 0.758).Conclusions: It is feasible to predict a DBT screening recall recommendation using patient demographics and breast care factors that can be extracted automatically from the EMR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screening mammography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital breast tomosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anxiety</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazurowski, Maciej A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grimm, Lars J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of radiology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">166</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32044483X</subfield><subfield code="w">(DE-600)2005350-2</subfield><subfield code="w">(DE-576)099718138</subfield><subfield code="x">1872-7727</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:166</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.64</subfield><subfield code="j">Radiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">166</subfield></datafield></record></collection>
|
score |
7.4011555 |