Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution
In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency...
Ausführliche Beschreibung
Autor*in: |
Yang, Jiaming [verfasserIn] Zhou, Jun [verfasserIn] Liu, Zhengrong [verfasserIn] Sun, Yueyue [verfasserIn] Yin, Chaofan [verfasserIn] Wang, Kaiteng [verfasserIn] Li, Ruhuan [verfasserIn] Zhou, Zilin [verfasserIn] Wu, Kai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of power sources - New York, NY [u.a.] : Elsevier, 1976, 580 |
---|---|
Übergeordnetes Werk: |
volume:580 |
DOI / URN: |
10.1016/j.jpowsour.2023.233369 |
---|
Katalog-ID: |
ELV062008226 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062008226 | ||
003 | DE-627 | ||
005 | 20231205153719.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230822s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2023.233369 |2 doi | |
035 | |a (DE-627)ELV062008226 | ||
035 | |a (ELSEVIER)S0378-7753(23)00745-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 52.57 |2 bkl | ||
084 | |a 53.36 |2 bkl | ||
100 | 1 | |a Yang, Jiaming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. | ||
650 | 4 | |a Exsolution | |
650 | 4 | |a Reversible solid oxide cells | |
650 | 4 | |a High A-site deficiency | |
650 | 4 | |a Ni-equilibrium model | |
650 | 4 | |a DRT analysis | |
700 | 1 | |a Zhou, Jun |e verfasserin |0 (orcid)0000-0003-1994-8443 |4 aut | |
700 | 1 | |a Liu, Zhengrong |e verfasserin |4 aut | |
700 | 1 | |a Sun, Yueyue |e verfasserin |4 aut | |
700 | 1 | |a Yin, Chaofan |e verfasserin |4 aut | |
700 | 1 | |a Wang, Kaiteng |e verfasserin |4 aut | |
700 | 1 | |a Li, Ruhuan |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Zilin |e verfasserin |0 (orcid)0009-0007-1440-4558 |4 aut | |
700 | 1 | |a Wu, Kai |e verfasserin |0 (orcid)0000-0003-4714-2906 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of power sources |d New York, NY [u.a.] : Elsevier, 1976 |g 580 |h Online-Ressource |w (DE-627)302718923 |w (DE-600)1491915-1 |w (DE-576)259483958 |x 1873-2755 |7 nnns |
773 | 1 | 8 | |g volume:580 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.57 |j Energiespeicherung |q VZ |
936 | b | k | |a 53.36 |j Energiedirektumwandler |j elektrische Energiespeicher |q VZ |
951 | |a AR | ||
952 | |d 580 |
author_variant |
j y jy j z jz z l zl y s ys c y cy k w kw r l rl z z zz k w kw |
---|---|
matchkey_str |
article:18732755:2023----::xlrnhtrgnoshssnihystdfcetia |
hierarchy_sort_str |
2023 |
bklnumber |
52.57 53.36 |
publishDate |
2023 |
allfields |
10.1016/j.jpowsour.2023.233369 doi (DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 DE-627 ger DE-627 rda eng 620 VZ 52.57 bkl 53.36 bkl Yang, Jiaming verfasserin aut Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis Zhou, Jun verfasserin (orcid)0000-0003-1994-8443 aut Liu, Zhengrong verfasserin aut Sun, Yueyue verfasserin aut Yin, Chaofan verfasserin aut Wang, Kaiteng verfasserin aut Li, Ruhuan verfasserin aut Zhou, Zilin verfasserin (orcid)0009-0007-1440-4558 aut Wu, Kai verfasserin (orcid)0000-0003-4714-2906 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 580 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:580 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.57 Energiespeicherung VZ 53.36 Energiedirektumwandler elektrische Energiespeicher VZ AR 580 |
spelling |
10.1016/j.jpowsour.2023.233369 doi (DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 DE-627 ger DE-627 rda eng 620 VZ 52.57 bkl 53.36 bkl Yang, Jiaming verfasserin aut Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis Zhou, Jun verfasserin (orcid)0000-0003-1994-8443 aut Liu, Zhengrong verfasserin aut Sun, Yueyue verfasserin aut Yin, Chaofan verfasserin aut Wang, Kaiteng verfasserin aut Li, Ruhuan verfasserin aut Zhou, Zilin verfasserin (orcid)0009-0007-1440-4558 aut Wu, Kai verfasserin (orcid)0000-0003-4714-2906 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 580 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:580 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.57 Energiespeicherung VZ 53.36 Energiedirektumwandler elektrische Energiespeicher VZ AR 580 |
allfields_unstemmed |
10.1016/j.jpowsour.2023.233369 doi (DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 DE-627 ger DE-627 rda eng 620 VZ 52.57 bkl 53.36 bkl Yang, Jiaming verfasserin aut Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis Zhou, Jun verfasserin (orcid)0000-0003-1994-8443 aut Liu, Zhengrong verfasserin aut Sun, Yueyue verfasserin aut Yin, Chaofan verfasserin aut Wang, Kaiteng verfasserin aut Li, Ruhuan verfasserin aut Zhou, Zilin verfasserin (orcid)0009-0007-1440-4558 aut Wu, Kai verfasserin (orcid)0000-0003-4714-2906 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 580 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:580 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.57 Energiespeicherung VZ 53.36 Energiedirektumwandler elektrische Energiespeicher VZ AR 580 |
allfieldsGer |
10.1016/j.jpowsour.2023.233369 doi (DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 DE-627 ger DE-627 rda eng 620 VZ 52.57 bkl 53.36 bkl Yang, Jiaming verfasserin aut Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis Zhou, Jun verfasserin (orcid)0000-0003-1994-8443 aut Liu, Zhengrong verfasserin aut Sun, Yueyue verfasserin aut Yin, Chaofan verfasserin aut Wang, Kaiteng verfasserin aut Li, Ruhuan verfasserin aut Zhou, Zilin verfasserin (orcid)0009-0007-1440-4558 aut Wu, Kai verfasserin (orcid)0000-0003-4714-2906 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 580 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:580 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.57 Energiespeicherung VZ 53.36 Energiedirektumwandler elektrische Energiespeicher VZ AR 580 |
allfieldsSound |
10.1016/j.jpowsour.2023.233369 doi (DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 DE-627 ger DE-627 rda eng 620 VZ 52.57 bkl 53.36 bkl Yang, Jiaming verfasserin aut Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis Zhou, Jun verfasserin (orcid)0000-0003-1994-8443 aut Liu, Zhengrong verfasserin aut Sun, Yueyue verfasserin aut Yin, Chaofan verfasserin aut Wang, Kaiteng verfasserin aut Li, Ruhuan verfasserin aut Zhou, Zilin verfasserin (orcid)0009-0007-1440-4558 aut Wu, Kai verfasserin (orcid)0000-0003-4714-2906 aut Enthalten in Journal of power sources New York, NY [u.a.] : Elsevier, 1976 580 Online-Ressource (DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 1873-2755 nnns volume:580 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.57 Energiespeicherung VZ 53.36 Energiedirektumwandler elektrische Energiespeicher VZ AR 580 |
language |
English |
source |
Enthalten in Journal of power sources 580 volume:580 |
sourceStr |
Enthalten in Journal of power sources 580 volume:580 |
format_phy_str_mv |
Article |
bklname |
Energiespeicherung Energiedirektumwandler elektrische Energiespeicher |
institution |
findex.gbv.de |
topic_facet |
Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of power sources |
authorswithroles_txt_mv |
Yang, Jiaming @@aut@@ Zhou, Jun @@aut@@ Liu, Zhengrong @@aut@@ Sun, Yueyue @@aut@@ Yin, Chaofan @@aut@@ Wang, Kaiteng @@aut@@ Li, Ruhuan @@aut@@ Zhou, Zilin @@aut@@ Wu, Kai @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302718923 |
dewey-sort |
3620 |
id |
ELV062008226 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062008226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230822s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2023.233369</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062008226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(23)00745-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Jiaming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exsolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible solid oxide cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High A-site deficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ni-equilibrium model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DRT analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1994-8443</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhengrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yueyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Chaofan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kaiteng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ruhuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zilin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0007-1440-4558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4714-2906</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">580</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:580</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">580</subfield></datafield></record></collection>
|
author |
Yang, Jiaming |
spellingShingle |
Yang, Jiaming ddc 620 bkl 52.57 bkl 53.36 misc Exsolution misc Reversible solid oxide cells misc High A-site deficiency misc Ni-equilibrium model misc DRT analysis Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
authorStr |
Yang, Jiaming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302718923 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2755 |
topic_title |
620 VZ 52.57 bkl 53.36 bkl Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution Exsolution Reversible solid oxide cells High A-site deficiency Ni-equilibrium model DRT analysis |
topic |
ddc 620 bkl 52.57 bkl 53.36 misc Exsolution misc Reversible solid oxide cells misc High A-site deficiency misc Ni-equilibrium model misc DRT analysis |
topic_unstemmed |
ddc 620 bkl 52.57 bkl 53.36 misc Exsolution misc Reversible solid oxide cells misc High A-site deficiency misc Ni-equilibrium model misc DRT analysis |
topic_browse |
ddc 620 bkl 52.57 bkl 53.36 misc Exsolution misc Reversible solid oxide cells misc High A-site deficiency misc Ni-equilibrium model misc DRT analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of power sources |
hierarchy_parent_id |
302718923 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Journal of power sources |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302718923 (DE-600)1491915-1 (DE-576)259483958 |
title |
Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
ctrlnum |
(DE-627)ELV062008226 (ELSEVIER)S0378-7753(23)00745-0 |
title_full |
Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
author_sort |
Yang, Jiaming |
journal |
Journal of power sources |
journalStr |
Journal of power sources |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Yang, Jiaming Zhou, Jun Liu, Zhengrong Sun, Yueyue Yin, Chaofan Wang, Kaiteng Li, Ruhuan Zhou, Zilin Wu, Kai |
container_volume |
580 |
class |
620 VZ 52.57 bkl 53.36 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Jiaming |
doi_str_mv |
10.1016/j.jpowsour.2023.233369 |
normlink |
(ORCID)0000-0003-1994-8443 (ORCID)0009-0007-1440-4558 (ORCID)0000-0003-4714-2906 |
normlink_prefix_str_mv |
(orcid)0000-0003-1994-8443 (orcid)0009-0007-1440-4558 (orcid)0000-0003-4714-2906 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
exploring heterogeneous phases in highly a-site-deficient titanate with ni exsolution |
title_auth |
Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
abstract |
In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. |
abstractGer |
In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. |
abstract_unstemmed |
In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution |
remote_bool |
true |
author2 |
Zhou, Jun Liu, Zhengrong Sun, Yueyue Yin, Chaofan Wang, Kaiteng Li, Ruhuan Zhou, Zilin Wu, Kai |
author2Str |
Zhou, Jun Liu, Zhengrong Sun, Yueyue Yin, Chaofan Wang, Kaiteng Li, Ruhuan Zhou, Zilin Wu, Kai |
ppnlink |
302718923 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jpowsour.2023.233369 |
up_date |
2024-07-06T18:18:03.473Z |
_version_ |
1803854684854681600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062008226</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230822s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2023.233369</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062008226</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(23)00745-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.57</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Jiaming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In-situ exsolution technique, as an efficient and controllable strategy of surface modification, has been extensively applied in reversible solid oxide cells (RSOCs). Here, we demonstrate LaxSrxTi0.9Ni0.1O3-δ fiber decorated by exsolved Ni nanoparticles and highlight the impacts of A-site deficiency on Ni exsolution and electrochemical performance of RSOCs. The La0.4Sr0.4Ti0.9Ni0.1O3 (A/B = 0.8) fibrous fuel electrode decorated by Ni nanoparticles with moderate Ni exsolution displays optimum electrochemical performance at 800 °C, achieving ∼540 mW cm−2 in SOFC mode and −0.742/0.385 A cm−2 under 1.3/0.7 V in RSOC mode. In contrast, high A-site deficiency (A/B < 0.8) allows heterogeneous phases (NiTiO3) and excessive Ni exsolution along with alterations of fibrous morphology, leading to slow gas diffusion, sluggish catalysis, and Ni agglomeration. The distribution of relaxation time (DRT) results show that the rate-limiting steps in symmetrical cells are gas diffusion, hydrogen adsorption, and dissociation, accounting for over 89% of the total RP. Ni-equilibrium model based on X-ray Rietveld refinement calculates the degree of exsolution with various A-site deficiency, revealing NiTiO3 is the key factor of excessive exsolution. Our work of high A-site deficiency exemplified here may serve in the design and nanoengineering of fibrous ABO3 perovskite oxides for RSOCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exsolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible solid oxide cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High A-site deficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ni-equilibrium model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DRT analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1994-8443</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Zhengrong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yueyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Chaofan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kaiteng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ruhuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zilin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0007-1440-4558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Kai</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4714-2906</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of power sources</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">580</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302718923</subfield><subfield code="w">(DE-600)1491915-1</subfield><subfield code="w">(DE-576)259483958</subfield><subfield code="x">1873-2755</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:580</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.57</subfield><subfield code="j">Energiespeicherung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.36</subfield><subfield code="j">Energiedirektumwandler</subfield><subfield code="j">elektrische Energiespeicher</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">580</subfield></datafield></record></collection>
|
score |
7.402767 |