Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks
This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarizati...
Ausführliche Beschreibung
Autor*in: |
Rizvandi, Omid Babaie [verfasserIn] Frandsen, Henrik Lund [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of hydrogen energy - New York, NY [u.a.] : Elsevier, 1976, 48 |
---|---|
Übergeordnetes Werk: |
volume:48 |
DOI / URN: |
10.1016/j.ijhydene.2023.04.169 |
---|
Katalog-ID: |
ELV062042254 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062042254 | ||
003 | DE-627 | ||
005 | 20231207093357.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230823s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2023.04.169 |2 doi | |
035 | |a (DE-627)ELV062042254 | ||
035 | |a (ELSEVIER)S0360-3199(23)01949-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Rizvandi, Omid Babaie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. | ||
650 | 4 | |a Solid oxide electrolysis stack | |
650 | 4 | |a High-pressure operation | |
650 | 4 | |a Stack-scale modeling | |
650 | 4 | |a ASR variations | |
650 | 4 | |a OCV variations | |
650 | 4 | |a Flow field improvement | |
700 | 1 | |a Frandsen, Henrik Lund |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of hydrogen energy |d New York, NY [u.a.] : Elsevier, 1976 |g 48 |h Online-Ressource |w (DE-627)301511357 |w (DE-600)1484487-4 |w (DE-576)096806397 |x 1879-3487 |7 nnns |
773 | 1 | 8 | |g volume:48 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 48 |
author_variant |
o b r ob obr h l f hl hlf |
---|---|
matchkey_str |
article:18793487:2023----::oeigfigendulsddihrsueprtoosldx |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.ijhydene.2023.04.169 doi (DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Rizvandi, Omid Babaie verfasserin aut Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement Frandsen, Henrik Lund verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
spelling |
10.1016/j.ijhydene.2023.04.169 doi (DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Rizvandi, Omid Babaie verfasserin aut Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement Frandsen, Henrik Lund verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfields_unstemmed |
10.1016/j.ijhydene.2023.04.169 doi (DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Rizvandi, Omid Babaie verfasserin aut Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement Frandsen, Henrik Lund verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsGer |
10.1016/j.ijhydene.2023.04.169 doi (DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Rizvandi, Omid Babaie verfasserin aut Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement Frandsen, Henrik Lund verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
allfieldsSound |
10.1016/j.ijhydene.2023.04.169 doi (DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 DE-627 ger DE-627 rda eng 660 620 VZ 52.56 bkl Rizvandi, Omid Babaie verfasserin aut Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement Frandsen, Henrik Lund verfasserin aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 48 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:48 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 48 |
language |
English |
source |
Enthalten in International journal of hydrogen energy 48 volume:48 |
sourceStr |
Enthalten in International journal of hydrogen energy 48 volume:48 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
International journal of hydrogen energy |
authorswithroles_txt_mv |
Rizvandi, Omid Babaie @@aut@@ Frandsen, Henrik Lund @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
301511357 |
dewey-sort |
3660 |
id |
ELV062042254 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062042254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230823s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.04.169</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062042254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)01949-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rizvandi, Omid Babaie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid oxide electrolysis stack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-pressure operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stack-scale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ASR variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OCV variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow field improvement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frandsen, Henrik Lund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
author |
Rizvandi, Omid Babaie |
spellingShingle |
Rizvandi, Omid Babaie ddc 660 bkl 52.56 misc Solid oxide electrolysis stack misc High-pressure operation misc Stack-scale modeling misc ASR variations misc OCV variations misc Flow field improvement Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
authorStr |
Rizvandi, Omid Babaie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511357 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3487 |
topic_title |
660 620 VZ 52.56 bkl Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks Solid oxide electrolysis stack High-pressure operation Stack-scale modeling ASR variations OCV variations Flow field improvement |
topic |
ddc 660 bkl 52.56 misc Solid oxide electrolysis stack misc High-pressure operation misc Stack-scale modeling misc ASR variations misc OCV variations misc Flow field improvement |
topic_unstemmed |
ddc 660 bkl 52.56 misc Solid oxide electrolysis stack misc High-pressure operation misc Stack-scale modeling misc ASR variations misc OCV variations misc Flow field improvement |
topic_browse |
ddc 660 bkl 52.56 misc Solid oxide electrolysis stack misc High-pressure operation misc Stack-scale modeling misc ASR variations misc OCV variations misc Flow field improvement |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of hydrogen energy |
hierarchy_parent_id |
301511357 |
dewey-tens |
660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
International journal of hydrogen energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 |
title |
Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
ctrlnum |
(DE-627)ELV062042254 (ELSEVIER)S0360-3199(23)01949-3 |
title_full |
Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
author_sort |
Rizvandi, Omid Babaie |
journal |
International journal of hydrogen energy |
journalStr |
International journal of hydrogen energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Rizvandi, Omid Babaie Frandsen, Henrik Lund |
container_volume |
48 |
class |
660 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Rizvandi, Omid Babaie |
doi_str_mv |
10.1016/j.ijhydene.2023.04.169 |
dewey-full |
660 620 |
author2-role |
verfasserin |
title_sort |
modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
title_auth |
Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
abstract |
This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. |
abstractGer |
This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. |
abstract_unstemmed |
This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks |
remote_bool |
true |
author2 |
Frandsen, Henrik Lund |
author2Str |
Frandsen, Henrik Lund |
ppnlink |
301511357 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijhydene.2023.04.169 |
up_date |
2024-07-06T18:20:50.992Z |
_version_ |
1803854860511084544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062042254</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231207093357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230823s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2023.04.169</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062042254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(23)01949-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rizvandi, Omid Babaie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling of single- and double-sided high-pressure operation of solid oxide electrolysis stacks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study concerns numerical investigation of a solid oxide electrolysis stack, in which the cells are pressurized on only the fuel side (single-sided mode) or both fuel and air sides (double-sided mode). A 90-cell stack model is used to study the effects of the operating pressure on the polarization curves, area-specific-resistance (ASR), temperature, and pressure. The model predicts higher open-circuit voltage (OCV), lower ASR, and lower pressure drops over the flow fields at higher operating pressures. The latter leads to flexibility in the flow field design. The results show that the single-sided mode hinders the OCV increase and reduces the ASR. Nonetheless, the ASR reduction under the double-sided mode is more significant than the single-sided mode. Therefore, the double-sided mode performs better at high current densities since its higher ASR reduction provides a lower increase in the stack voltage (/input power). Moreover, the results indicate a nonlinear relationship between the temperature distribution and the operating pressure under the double-sided mode due to its counteracting effects on the ohmic heat sources and reaction heat sink. It is illustrated that the temperature difference over the stack decreases under the double-sided mode at higher operating pressures and lower current densities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid oxide electrolysis stack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-pressure operation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stack-scale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ASR variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OCV variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow field improvement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frandsen, Henrik Lund</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">48</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield></datafield></record></collection>
|
score |
7.402128 |