Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems
Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative t...
Ausführliche Beschreibung
Autor*in: |
Davenport, Patrick [verfasserIn] Ma, Zhiwen [verfasserIn] Schirck, Jason [verfasserIn] Nation, William [verfasserIn] Morris, Aaron [verfasserIn] Wang, Xingchao [verfasserIn] Lambert, Matthew [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy - Amsterdam [u.a.] : Elsevier Science, 1957, 262 |
---|---|
Übergeordnetes Werk: |
volume:262 |
DOI / URN: |
10.1016/j.solener.2023.111908 |
---|
Katalog-ID: |
ELV062191136 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062191136 | ||
003 | DE-627 | ||
005 | 20230927133048.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230826s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solener.2023.111908 |2 doi | |
035 | |a (DE-627)ELV062191136 | ||
035 | |a (ELSEVIER)S0038-092X(23)00541-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Davenport, Patrick |e verfasserin |0 (orcid)0000-0003-1825-9697 |4 aut | |
245 | 1 | 0 | |a Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. | ||
650 | 4 | |a Thermal energy storage | |
650 | 4 | |a Concentrating solar power | |
650 | 4 | |a Particle fluidization | |
650 | 4 | |a Thermal stability | |
650 | 4 | |a Silica sand | |
700 | 1 | |a Ma, Zhiwen |e verfasserin |4 aut | |
700 | 1 | |a Schirck, Jason |e verfasserin |0 (orcid)0000-0002-5177-2372 |4 aut | |
700 | 1 | |a Nation, William |e verfasserin |4 aut | |
700 | 1 | |a Morris, Aaron |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xingchao |e verfasserin |4 aut | |
700 | 1 | |a Lambert, Matthew |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar energy |d Amsterdam [u.a.] : Elsevier Science, 1957 |g 262 |h Online-Ressource |w (DE-627)320525597 |w (DE-600)2015126-3 |w (DE-576)096806648 |x 1471-1257 |7 nnns |
773 | 1 | 8 | |g volume:262 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 262 |
author_variant |
p d pd z m zm j s js w n wn a m am x w xw m l ml |
---|---|
matchkey_str |
article:14711257:2023----::hrceiainfoiprilcniaefrplctoitemlnrytrgad |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.solener.2023.111908 doi (DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 DE-627 ger DE-627 rda eng 530 VZ 52.56 bkl Davenport, Patrick verfasserin (orcid)0000-0003-1825-9697 aut Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand Ma, Zhiwen verfasserin aut Schirck, Jason verfasserin (orcid)0000-0002-5177-2372 aut Nation, William verfasserin aut Morris, Aaron verfasserin aut Wang, Xingchao verfasserin aut Lambert, Matthew verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 262 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:262 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 262 |
spelling |
10.1016/j.solener.2023.111908 doi (DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 DE-627 ger DE-627 rda eng 530 VZ 52.56 bkl Davenport, Patrick verfasserin (orcid)0000-0003-1825-9697 aut Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand Ma, Zhiwen verfasserin aut Schirck, Jason verfasserin (orcid)0000-0002-5177-2372 aut Nation, William verfasserin aut Morris, Aaron verfasserin aut Wang, Xingchao verfasserin aut Lambert, Matthew verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 262 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:262 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 262 |
allfields_unstemmed |
10.1016/j.solener.2023.111908 doi (DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 DE-627 ger DE-627 rda eng 530 VZ 52.56 bkl Davenport, Patrick verfasserin (orcid)0000-0003-1825-9697 aut Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand Ma, Zhiwen verfasserin aut Schirck, Jason verfasserin (orcid)0000-0002-5177-2372 aut Nation, William verfasserin aut Morris, Aaron verfasserin aut Wang, Xingchao verfasserin aut Lambert, Matthew verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 262 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:262 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 262 |
allfieldsGer |
10.1016/j.solener.2023.111908 doi (DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 DE-627 ger DE-627 rda eng 530 VZ 52.56 bkl Davenport, Patrick verfasserin (orcid)0000-0003-1825-9697 aut Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand Ma, Zhiwen verfasserin aut Schirck, Jason verfasserin (orcid)0000-0002-5177-2372 aut Nation, William verfasserin aut Morris, Aaron verfasserin aut Wang, Xingchao verfasserin aut Lambert, Matthew verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 262 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:262 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 262 |
allfieldsSound |
10.1016/j.solener.2023.111908 doi (DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 DE-627 ger DE-627 rda eng 530 VZ 52.56 bkl Davenport, Patrick verfasserin (orcid)0000-0003-1825-9697 aut Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand Ma, Zhiwen verfasserin aut Schirck, Jason verfasserin (orcid)0000-0002-5177-2372 aut Nation, William verfasserin aut Morris, Aaron verfasserin aut Wang, Xingchao verfasserin aut Lambert, Matthew verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 262 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:262 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 262 |
language |
English |
source |
Enthalten in Solar energy 262 volume:262 |
sourceStr |
Enthalten in Solar energy 262 volume:262 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy |
authorswithroles_txt_mv |
Davenport, Patrick @@aut@@ Ma, Zhiwen @@aut@@ Schirck, Jason @@aut@@ Nation, William @@aut@@ Morris, Aaron @@aut@@ Wang, Xingchao @@aut@@ Lambert, Matthew @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320525597 |
dewey-sort |
3530 |
id |
ELV062191136 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062191136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927133048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230826s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2023.111908</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062191136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(23)00541-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davenport, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1825-9697</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentrating solar power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle fluidization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica sand</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Zhiwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schirck, Jason</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5177-2372</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nation, William</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Aaron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xingchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lambert, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">262</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:262</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">262</subfield></datafield></record></collection>
|
author |
Davenport, Patrick |
spellingShingle |
Davenport, Patrick ddc 530 bkl 52.56 misc Thermal energy storage misc Concentrating solar power misc Particle fluidization misc Thermal stability misc Silica sand Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
authorStr |
Davenport, Patrick |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320525597 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-1257 |
topic_title |
530 VZ 52.56 bkl Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems Thermal energy storage Concentrating solar power Particle fluidization Thermal stability Silica sand |
topic |
ddc 530 bkl 52.56 misc Thermal energy storage misc Concentrating solar power misc Particle fluidization misc Thermal stability misc Silica sand |
topic_unstemmed |
ddc 530 bkl 52.56 misc Thermal energy storage misc Concentrating solar power misc Particle fluidization misc Thermal stability misc Silica sand |
topic_browse |
ddc 530 bkl 52.56 misc Thermal energy storage misc Concentrating solar power misc Particle fluidization misc Thermal stability misc Silica sand |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy |
hierarchy_parent_id |
320525597 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 |
title |
Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
ctrlnum |
(DE-627)ELV062191136 (ELSEVIER)S0038-092X(23)00541-8 |
title_full |
Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
author_sort |
Davenport, Patrick |
journal |
Solar energy |
journalStr |
Solar energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Davenport, Patrick Ma, Zhiwen Schirck, Jason Nation, William Morris, Aaron Wang, Xingchao Lambert, Matthew |
container_volume |
262 |
class |
530 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Davenport, Patrick |
doi_str_mv |
10.1016/j.solener.2023.111908 |
normlink |
(ORCID)0000-0003-1825-9697 (ORCID)0000-0002-5177-2372 |
normlink_prefix_str_mv |
(orcid)0000-0003-1825-9697 (orcid)0000-0002-5177-2372 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
title_auth |
Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
abstract |
Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. |
abstractGer |
Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. |
abstract_unstemmed |
Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2116 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems |
remote_bool |
true |
author2 |
Ma, Zhiwen Schirck, Jason Nation, William Morris, Aaron Wang, Xingchao Lambert, Matthew |
author2Str |
Ma, Zhiwen Schirck, Jason Nation, William Morris, Aaron Wang, Xingchao Lambert, Matthew |
ppnlink |
320525597 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solener.2023.111908 |
up_date |
2024-07-06T18:30:25.663Z |
_version_ |
1803855463097303040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062191136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927133048.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230826s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2023.111908</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062191136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(23)00541-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davenport, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1825-9697</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of solid particle candidates for application in thermal energy storage and concentrating solar power systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thermal energy storage (TES) enables concentrating solar power to remain competitive in the renewable energy mix by firming up intermittent solar resource and providing grid services such as load shifting. Free from siting constraints, stand-alone TES systems show promise as a low-cost alternative to traditional pumped-storage hydropower or compressed air energy storage. At the core of all TES technologies is a storage medium, the selection of which governs many aspects of system design and operation. Although the majority of commercial installations utilize molten salts, solid particles can demonstrate stability over wider temperature ranges. This amounts to increased energy storage densities and corresponding reductions in system cost which is essential in achieving low-cost energy storage. In this work, eight solid particle candidates are systematically identified and screened for application in a specific particle-TES system. The five most promising candidates (CARBO CP and HSP, calcined flint clay (CFC), brown fused alumina (BFA), and silica sand) are further characterized by size and morphology for fluidization suitability, flowability for particle transport, and thermal stability. Calcined flint clay and brown fused alumina are eventually down-selected due to thermal instability at the target operational temperature of 1200 °C. Although the physical characteristics of CARBO outperform silica sand in all categories examined, the marginal performance gains are considered insufficient to justify the additional media cost so silica sand is selected as the leading candidate. Within the silica sand (α-quartz) space, the high end of Geldart Group B particles is identified to satisfy the target fluidization regime for the application of interest without compromising particle flowability. In focused testing, Silica 460 is shown to exhibit sufficient stability through long-duration (500-hour) thermal and cyclic testing (1200 °C), 10-hour testing at 1400 °C, and in contact with candidate refractory containment materials. Finally, an average heat capacity of 1.1 J/g∙ °C is measured over 300–1200 °C with a quartz inversion enthalpy (ΔHα-β) of 10.7 J/g.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal energy storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentrating solar power</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle fluidization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica sand</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Zhiwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schirck, Jason</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5177-2372</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nation, William</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Aaron</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xingchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lambert, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">262</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:262</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">262</subfield></datafield></record></collection>
|
score |
7.401005 |