Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue
The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in th...
Ausführliche Beschreibung
Autor*in: |
Tang, Haoyu [verfasserIn] Li, Aijun [verfasserIn] Yi, Linlin [verfasserIn] Huang, Yongda [verfasserIn] Deng, Qian [verfasserIn] Wu, Yangwei [verfasserIn] Yao, Hong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Process safety and environmental protection - Amsterdam : Elsevier, 1990, 177, Seite 831-843 |
---|---|
Übergeordnetes Werk: |
volume:177 ; pages:831-843 |
DOI / URN: |
10.1016/j.psep.2023.07.062 |
---|
Katalog-ID: |
ELV062210289 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062210289 | ||
003 | DE-627 | ||
005 | 20230927100735.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230826s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.psep.2023.07.062 |2 doi | |
035 | |a (DE-627)ELV062210289 | ||
035 | |a (ELSEVIER)S0957-5820(23)00667-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 540 |a 333.7 |q VZ |
084 | |a 58.18 |2 bkl | ||
100 | 1 | |a Tang, Haoyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. | ||
650 | 4 | |a Traditional Chinese herb residues | |
650 | 4 | |a Aerobic composting | |
650 | 4 | |a Biochar | |
650 | 4 | |a Feedstock properties | |
650 | 4 | |a Carbonization mechanism | |
700 | 1 | |a Li, Aijun |e verfasserin |4 aut | |
700 | 1 | |a Yi, Linlin |e verfasserin |4 aut | |
700 | 1 | |a Huang, Yongda |e verfasserin |4 aut | |
700 | 1 | |a Deng, Qian |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yangwei |e verfasserin |4 aut | |
700 | 1 | |a Yao, Hong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Process safety and environmental protection |d Amsterdam : Elsevier, 1990 |g 177, Seite 831-843 |h Online-Ressource |w (DE-627)318710420 |w (DE-600)2008004-9 |w (DE-576)284747785 |7 nnns |
773 | 1 | 8 | |g volume:177 |g pages:831-843 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.18 |j Chemische Betriebstechnik |q VZ |
951 | |a AR | ||
952 | |d 177 |h 831-843 |
author_variant |
h t ht a l al l y ly y h yh q d qd y w yw h y hy |
---|---|
matchkey_str |
tanghaoyuliaijunyilinlinhuangyongdadengq:2023----:agtdrprtoobohroteplctoacmotnadtvifuneehnsofesokrprisnicad |
hierarchy_sort_str |
2023 |
bklnumber |
58.18 |
publishDate |
2023 |
allfields |
10.1016/j.psep.2023.07.062 doi (DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 DE-627 ger DE-627 rda eng 660 540 333.7 VZ 58.18 bkl Tang, Haoyu verfasserin aut Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism Li, Aijun verfasserin aut Yi, Linlin verfasserin aut Huang, Yongda verfasserin aut Deng, Qian verfasserin aut Wu, Yangwei verfasserin aut Yao, Hong verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 177, Seite 831-843 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:177 pages:831-843 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 177 831-843 |
spelling |
10.1016/j.psep.2023.07.062 doi (DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 DE-627 ger DE-627 rda eng 660 540 333.7 VZ 58.18 bkl Tang, Haoyu verfasserin aut Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism Li, Aijun verfasserin aut Yi, Linlin verfasserin aut Huang, Yongda verfasserin aut Deng, Qian verfasserin aut Wu, Yangwei verfasserin aut Yao, Hong verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 177, Seite 831-843 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:177 pages:831-843 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 177 831-843 |
allfields_unstemmed |
10.1016/j.psep.2023.07.062 doi (DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 DE-627 ger DE-627 rda eng 660 540 333.7 VZ 58.18 bkl Tang, Haoyu verfasserin aut Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism Li, Aijun verfasserin aut Yi, Linlin verfasserin aut Huang, Yongda verfasserin aut Deng, Qian verfasserin aut Wu, Yangwei verfasserin aut Yao, Hong verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 177, Seite 831-843 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:177 pages:831-843 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 177 831-843 |
allfieldsGer |
10.1016/j.psep.2023.07.062 doi (DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 DE-627 ger DE-627 rda eng 660 540 333.7 VZ 58.18 bkl Tang, Haoyu verfasserin aut Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism Li, Aijun verfasserin aut Yi, Linlin verfasserin aut Huang, Yongda verfasserin aut Deng, Qian verfasserin aut Wu, Yangwei verfasserin aut Yao, Hong verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 177, Seite 831-843 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:177 pages:831-843 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 177 831-843 |
allfieldsSound |
10.1016/j.psep.2023.07.062 doi (DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 DE-627 ger DE-627 rda eng 660 540 333.7 VZ 58.18 bkl Tang, Haoyu verfasserin aut Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism Li, Aijun verfasserin aut Yi, Linlin verfasserin aut Huang, Yongda verfasserin aut Deng, Qian verfasserin aut Wu, Yangwei verfasserin aut Yao, Hong verfasserin aut Enthalten in Process safety and environmental protection Amsterdam : Elsevier, 1990 177, Seite 831-843 Online-Ressource (DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 nnns volume:177 pages:831-843 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.18 Chemische Betriebstechnik VZ AR 177 831-843 |
language |
English |
source |
Enthalten in Process safety and environmental protection 177, Seite 831-843 volume:177 pages:831-843 |
sourceStr |
Enthalten in Process safety and environmental protection 177, Seite 831-843 volume:177 pages:831-843 |
format_phy_str_mv |
Article |
bklname |
Chemische Betriebstechnik |
institution |
findex.gbv.de |
topic_facet |
Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Process safety and environmental protection |
authorswithroles_txt_mv |
Tang, Haoyu @@aut@@ Li, Aijun @@aut@@ Yi, Linlin @@aut@@ Huang, Yongda @@aut@@ Deng, Qian @@aut@@ Wu, Yangwei @@aut@@ Yao, Hong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
318710420 |
dewey-sort |
3660 |
id |
ELV062210289 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062210289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927100735.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230826s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2023.07.062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062210289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(23)00667-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Chinese herb residues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerobic composting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedstock properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonization mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Aijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Linlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yongda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Qian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yangwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">177, Seite 831-843</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">pages:831-843</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="h">831-843</subfield></datafield></record></collection>
|
author |
Tang, Haoyu |
spellingShingle |
Tang, Haoyu ddc 660 bkl 58.18 misc Traditional Chinese herb residues misc Aerobic composting misc Biochar misc Feedstock properties misc Carbonization mechanism Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
authorStr |
Tang, Haoyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)318710420 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 540 - Chemistry & allied sciences 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 540 333.7 VZ 58.18 bkl Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue Traditional Chinese herb residues Aerobic composting Biochar Feedstock properties Carbonization mechanism |
topic |
ddc 660 bkl 58.18 misc Traditional Chinese herb residues misc Aerobic composting misc Biochar misc Feedstock properties misc Carbonization mechanism |
topic_unstemmed |
ddc 660 bkl 58.18 misc Traditional Chinese herb residues misc Aerobic composting misc Biochar misc Feedstock properties misc Carbonization mechanism |
topic_browse |
ddc 660 bkl 58.18 misc Traditional Chinese herb residues misc Aerobic composting misc Biochar misc Feedstock properties misc Carbonization mechanism |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Process safety and environmental protection |
hierarchy_parent_id |
318710420 |
dewey-tens |
660 - Chemical engineering 540 - Chemistry 330 - Economics |
hierarchy_top_title |
Process safety and environmental protection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)318710420 (DE-600)2008004-9 (DE-576)284747785 |
title |
Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
ctrlnum |
(DE-627)ELV062210289 (ELSEVIER)S0957-5820(23)00667-5 |
title_full |
Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
author_sort |
Tang, Haoyu |
journal |
Process safety and environmental protection |
journalStr |
Process safety and environmental protection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
831 |
author_browse |
Tang, Haoyu Li, Aijun Yi, Linlin Huang, Yongda Deng, Qian Wu, Yangwei Yao, Hong |
container_volume |
177 |
class |
660 540 333.7 VZ 58.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tang, Haoyu |
doi_str_mv |
10.1016/j.psep.2023.07.062 |
dewey-full |
660 540 333.7 |
author2-role |
verfasserin |
title_sort |
targeted preparation of biochar for the application as composting additive: influence mechanism of feedstock properties on biochar derived from traditional chinese herb residue |
title_auth |
Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
abstract |
The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. |
abstractGer |
The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. |
abstract_unstemmed |
The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue |
remote_bool |
true |
author2 |
Li, Aijun Yi, Linlin Huang, Yongda Deng, Qian Wu, Yangwei Yao, Hong |
author2Str |
Li, Aijun Yi, Linlin Huang, Yongda Deng, Qian Wu, Yangwei Yao, Hong |
ppnlink |
318710420 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.psep.2023.07.062 |
up_date |
2024-07-06T18:31:48.637Z |
_version_ |
1803855550102896640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062210289</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927100735.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230826s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.psep.2023.07.062</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062210289</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-5820(23)00667-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">540</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Targeted preparation of biochar for the application as composting additive: Influence mechanism of feedstock properties on biochar derived from traditional Chinese herb residue</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The addition of biochar derived from traditional Chinese herb residue (TCHRs) into the composting process of herbal waste could help to achieve the carbon neutrality of the traditional Chinese medicine industry. However, because of the influence of the decoction process and the huge difference in the characteristics of herb residue from various parts, the feedstock properties greatly affect the physicochemical properties of biochar, which will influence the composting performance. In this study, the influence mechanism of feedstock properties on biochar derived from root, stem, and leaf parts of TCHRs was clarified. Results showed that the highest weight loss rates of root, stem and leaf residues after the decoction process increased to − 13.07 %/min, − 5.25 %/min and − 5.90 %/min due to the increasing volatile matter and decreasing ash content. In addition, the oxygen-containing functional groups were reduced, and better pore structures of biochar were developed after the decoction process, which would influence the microbial activity in the composting process. Moreover, the maximum specific surface area of root, stem and leaf residue biochar had reached 125.35 m2/g, 236.33 m2/g and 38.77 m2/g, respectively. The aromaticity of root biochar was up to 83.68 %, which mainly consisted of an aromatic C-C structure. And the aromaticity of leaf biochar was 86.74 %, which mainly consisted of aromatic C-O and C-H. Especially, the stem residue biochar bore a rich carbonyl structure, which helped reduce the risk of heavy metals in the composting process. Finally, it is supposed to choose different sorts of herbal biochar to be additive into various composting processes for the promotion of circular economy of the traditional Chinese medicine industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Chinese herb residues</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerobic composting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feedstock properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonization mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Aijun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Linlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yongda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Qian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yangwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Process safety and environmental protection</subfield><subfield code="d">Amsterdam : Elsevier, 1990</subfield><subfield code="g">177, Seite 831-843</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)318710420</subfield><subfield code="w">(DE-600)2008004-9</subfield><subfield code="w">(DE-576)284747785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:177</subfield><subfield code="g">pages:831-843</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.18</subfield><subfield code="j">Chemische Betriebstechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">177</subfield><subfield code="h">831-843</subfield></datafield></record></collection>
|
score |
7.401124 |