Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy)
Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical da...
Ausführliche Beschreibung
Autor*in: |
Fei, Li [verfasserIn] Jaboyedoff, Michel [verfasserIn] Guerin, Antoine [verfasserIn] Noël, François [verfasserIn] Bertolo, Davide [verfasserIn] Derron, Marc-Henri [verfasserIn] Thuegaz, Patrick [verfasserIn] Troilo, Fabrizio [verfasserIn] Ravanel, Ludovic [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering geology - Amsterdam [u.a.] : Elsevier Science, 1965, 323 |
---|---|
Übergeordnetes Werk: |
volume:323 |
DOI / URN: |
10.1016/j.enggeo.2023.107239 |
---|
Katalog-ID: |
ELV06230612X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06230612X | ||
003 | DE-627 | ||
005 | 20230927082003.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230828s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.enggeo.2023.107239 |2 doi | |
035 | |a (DE-627)ELV06230612X | ||
035 | |a (ELSEVIER)S0013-7952(23)00257-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 56.20 |2 bkl | ||
100 | 1 | |a Fei, Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. | ||
650 | 4 | |a Rockfall | |
650 | 4 | |a Photogrammetry | |
650 | 4 | |a SLBL | |
650 | 4 | |a Failure scenario | |
650 | 4 | |a Return period | |
700 | 1 | |a Jaboyedoff, Michel |e verfasserin |4 aut | |
700 | 1 | |a Guerin, Antoine |e verfasserin |4 aut | |
700 | 1 | |a Noël, François |e verfasserin |4 aut | |
700 | 1 | |a Bertolo, Davide |e verfasserin |4 aut | |
700 | 1 | |a Derron, Marc-Henri |e verfasserin |4 aut | |
700 | 1 | |a Thuegaz, Patrick |e verfasserin |4 aut | |
700 | 1 | |a Troilo, Fabrizio |e verfasserin |4 aut | |
700 | 1 | |a Ravanel, Ludovic |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering geology |d Amsterdam [u.a.] : Elsevier Science, 1965 |g 323 |h Online-Ressource |w (DE-627)306658267 |w (DE-600)1500329-2 |w (DE-576)259270962 |x 0013-7952 |7 nnns |
773 | 1 | 8 | |g volume:323 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 56.20 |j Ingenieurgeologie |j Bodenmechanik |q VZ |
951 | |a AR | ||
952 | |d 323 |
author_variant |
l f lf m j mj a g ag f n fn d b db m h d mhd p t pt f t ft l r lr |
---|---|
matchkey_str |
article:00137952:2023----::sesnteokalrrtrprooausalapnrcwlbsdnouerqecrltosish |
hierarchy_sort_str |
2023 |
bklnumber |
56.20 |
publishDate |
2023 |
allfields |
10.1016/j.enggeo.2023.107239 doi (DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 DE-627 ger DE-627 rda eng 550 VZ 56.20 bkl Fei, Li verfasserin aut Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. Rockfall Photogrammetry SLBL Failure scenario Return period Jaboyedoff, Michel verfasserin aut Guerin, Antoine verfasserin aut Noël, François verfasserin aut Bertolo, Davide verfasserin aut Derron, Marc-Henri verfasserin aut Thuegaz, Patrick verfasserin aut Troilo, Fabrizio verfasserin aut Ravanel, Ludovic verfasserin aut Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 323 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:323 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.20 Ingenieurgeologie Bodenmechanik VZ AR 323 |
spelling |
10.1016/j.enggeo.2023.107239 doi (DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 DE-627 ger DE-627 rda eng 550 VZ 56.20 bkl Fei, Li verfasserin aut Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. Rockfall Photogrammetry SLBL Failure scenario Return period Jaboyedoff, Michel verfasserin aut Guerin, Antoine verfasserin aut Noël, François verfasserin aut Bertolo, Davide verfasserin aut Derron, Marc-Henri verfasserin aut Thuegaz, Patrick verfasserin aut Troilo, Fabrizio verfasserin aut Ravanel, Ludovic verfasserin aut Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 323 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:323 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.20 Ingenieurgeologie Bodenmechanik VZ AR 323 |
allfields_unstemmed |
10.1016/j.enggeo.2023.107239 doi (DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 DE-627 ger DE-627 rda eng 550 VZ 56.20 bkl Fei, Li verfasserin aut Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. Rockfall Photogrammetry SLBL Failure scenario Return period Jaboyedoff, Michel verfasserin aut Guerin, Antoine verfasserin aut Noël, François verfasserin aut Bertolo, Davide verfasserin aut Derron, Marc-Henri verfasserin aut Thuegaz, Patrick verfasserin aut Troilo, Fabrizio verfasserin aut Ravanel, Ludovic verfasserin aut Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 323 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:323 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.20 Ingenieurgeologie Bodenmechanik VZ AR 323 |
allfieldsGer |
10.1016/j.enggeo.2023.107239 doi (DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 DE-627 ger DE-627 rda eng 550 VZ 56.20 bkl Fei, Li verfasserin aut Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. Rockfall Photogrammetry SLBL Failure scenario Return period Jaboyedoff, Michel verfasserin aut Guerin, Antoine verfasserin aut Noël, François verfasserin aut Bertolo, Davide verfasserin aut Derron, Marc-Henri verfasserin aut Thuegaz, Patrick verfasserin aut Troilo, Fabrizio verfasserin aut Ravanel, Ludovic verfasserin aut Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 323 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:323 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.20 Ingenieurgeologie Bodenmechanik VZ AR 323 |
allfieldsSound |
10.1016/j.enggeo.2023.107239 doi (DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 DE-627 ger DE-627 rda eng 550 VZ 56.20 bkl Fei, Li verfasserin aut Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. Rockfall Photogrammetry SLBL Failure scenario Return period Jaboyedoff, Michel verfasserin aut Guerin, Antoine verfasserin aut Noël, François verfasserin aut Bertolo, Davide verfasserin aut Derron, Marc-Henri verfasserin aut Thuegaz, Patrick verfasserin aut Troilo, Fabrizio verfasserin aut Ravanel, Ludovic verfasserin aut Enthalten in Engineering geology Amsterdam [u.a.] : Elsevier Science, 1965 323 Online-Ressource (DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 0013-7952 nnns volume:323 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.20 Ingenieurgeologie Bodenmechanik VZ AR 323 |
language |
English |
source |
Enthalten in Engineering geology 323 volume:323 |
sourceStr |
Enthalten in Engineering geology 323 volume:323 |
format_phy_str_mv |
Article |
bklname |
Ingenieurgeologie Bodenmechanik |
institution |
findex.gbv.de |
topic_facet |
Rockfall Photogrammetry SLBL Failure scenario Return period |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Engineering geology |
authorswithroles_txt_mv |
Fei, Li @@aut@@ Jaboyedoff, Michel @@aut@@ Guerin, Antoine @@aut@@ Noël, François @@aut@@ Bertolo, Davide @@aut@@ Derron, Marc-Henri @@aut@@ Thuegaz, Patrick @@aut@@ Troilo, Fabrizio @@aut@@ Ravanel, Ludovic @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306658267 |
dewey-sort |
3550 |
id |
ELV06230612X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06230612X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927082003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230828s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enggeo.2023.107239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06230612X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7952(23)00257-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fei, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rockfall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photogrammetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SLBL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure scenario</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Return period</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaboyedoff, Michel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guerin, Antoine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noël, François</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertolo, Davide</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Derron, Marc-Henri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thuegaz, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Troilo, Fabrizio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ravanel, Ludovic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering geology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1965</subfield><subfield code="g">323</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658267</subfield><subfield code="w">(DE-600)1500329-2</subfield><subfield code="w">(DE-576)259270962</subfield><subfield code="x">0013-7952</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">323</subfield></datafield></record></collection>
|
author |
Fei, Li |
spellingShingle |
Fei, Li ddc 550 bkl 56.20 misc Rockfall misc Photogrammetry misc SLBL misc Failure scenario misc Return period Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
authorStr |
Fei, Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306658267 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0013-7952 |
topic_title |
550 VZ 56.20 bkl Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) Rockfall Photogrammetry SLBL Failure scenario Return period |
topic |
ddc 550 bkl 56.20 misc Rockfall misc Photogrammetry misc SLBL misc Failure scenario misc Return period |
topic_unstemmed |
ddc 550 bkl 56.20 misc Rockfall misc Photogrammetry misc SLBL misc Failure scenario misc Return period |
topic_browse |
ddc 550 bkl 56.20 misc Rockfall misc Photogrammetry misc SLBL misc Failure scenario misc Return period |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering geology |
hierarchy_parent_id |
306658267 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Engineering geology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306658267 (DE-600)1500329-2 (DE-576)259270962 |
title |
Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
ctrlnum |
(DE-627)ELV06230612X (ELSEVIER)S0013-7952(23)00257-0 |
title_full |
Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
author_sort |
Fei, Li |
journal |
Engineering geology |
journalStr |
Engineering geology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Fei, Li Jaboyedoff, Michel Guerin, Antoine Noël, François Bertolo, Davide Derron, Marc-Henri Thuegaz, Patrick Troilo, Fabrizio Ravanel, Ludovic |
container_volume |
323 |
class |
550 VZ 56.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Fei, Li |
doi_str_mv |
10.1016/j.enggeo.2023.107239 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
assessing the rock failure return period on an unstable alpine rock wall based on volume-frequency relationships: the brenva spur (3916 m a.s.l., aosta valley, italy) |
title_auth |
Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
abstract |
Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. |
abstractGer |
Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. |
abstract_unstemmed |
Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy) |
remote_bool |
true |
author2 |
Jaboyedoff, Michel Guerin, Antoine Noël, François Bertolo, Davide Derron, Marc-Henri Thuegaz, Patrick Troilo, Fabrizio Ravanel, Ludovic |
author2Str |
Jaboyedoff, Michel Guerin, Antoine Noël, François Bertolo, Davide Derron, Marc-Henri Thuegaz, Patrick Troilo, Fabrizio Ravanel, Ludovic |
ppnlink |
306658267 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.enggeo.2023.107239 |
up_date |
2024-07-06T18:38:31.678Z |
_version_ |
1803855972718870528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06230612X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927082003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230828s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.enggeo.2023.107239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06230612X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0013-7952(23)00257-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fei, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the rock failure return period on an unstable Alpine rock wall based on volume-frequency relationships: The Brenva Spur (3916 m a.s.l., Aosta Valley, Italy)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Defining the relationship between volume and return period is critical when estimating the risk of rockfalls and/or rock avalanche, especially during continued global warming at high altitudes that threatens rock wall stability. Characterizing the volume-frequency relationship based on historical datasets is, however, limited by observation and quantification biases, which have not received enough attention. Here, to monitor recent activities for the Brenva Spur (Mont-Blanc massif, Italy) that is also a rock avalanche scar and estimate the return period of future rock failures based on the volume-frequency relationship (and the corresponding uncertainty), a structure-from-motion photogrammetric survey was conducted from 2017 to 2021. 39 rockfall sources with volumes ranging from 11 to 13,250 m3 were identified within the scar. The total failure volume is 22,438 m3, with an associated erosion rate of 15.5 mm/year, indicating very active morphodynamics possibly linked to the permafrost evolution in the spur. The volumes were characterized by a negative power-law that fits significant two events in 2016 (3.4 × 104 m3) and one in 1997 (2.0 × 106 m3) remarkably well, and the randomness of the fit was evaluated by a Monte Carlo approach. 7 potential failure scenarios ranging from 3.1 × 104 m3 (S1) to 4.8 × 106 m3 (S7) were defined according to a structural analysis and the sloping local base level concept. Their extrapolated return periods derived by the power-law fit indicate a longer return period for the maximum failure scenario than for the smaller scenarios. S1 has a 50% chance of occurring every 3 years, while S7 has a 50% chance of occurring every 31 years. Though the median return period of S7 is 31 years, the 95% and 68.2% confidence intervals range from 8 to 399 years and 14 to 93 years, respectively, which reflects a high level of uncertainty but is realistic when considering global warming, progressive rock failure, etc. In addition to characterizing recent rock failure activities in high mountains, this study offers a preliminary examination of the return periods of some extreme scenarios and provides primary data for risk management in mountainous areas that are very sensitive to global warming.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rockfall</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photogrammetry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SLBL</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Failure scenario</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Return period</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaboyedoff, Michel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guerin, Antoine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noël, François</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertolo, Davide</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Derron, Marc-Henri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thuegaz, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Troilo, Fabrizio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ravanel, Ludovic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering geology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1965</subfield><subfield code="g">323</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306658267</subfield><subfield code="w">(DE-600)1500329-2</subfield><subfield code="w">(DE-576)259270962</subfield><subfield code="x">0013-7952</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.20</subfield><subfield code="j">Ingenieurgeologie</subfield><subfield code="j">Bodenmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">323</subfield></datafield></record></collection>
|
score |
7.401886 |