Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG
The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of...
Ausführliche Beschreibung
Autor*in: |
Li, Cong [verfasserIn] Liu, Mingyao [verfasserIn] Song, Han [verfasserIn] Wang, Jingliang [verfasserIn] Wu, Yihang [verfasserIn] Chen, Xiaochuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 215 |
---|---|
Übergeordnetes Werk: |
volume:215 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2023.124514 |
---|
Katalog-ID: |
ELV062349880 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062349880 | ||
003 | DE-627 | ||
005 | 20230927084913.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230830s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2023.124514 |2 doi | |
035 | |a (DE-627)ELV062349880 | ||
035 | |a (ELSEVIER)S0017-9310(23)00659-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Li, Cong |e verfasserin |0 (orcid)0000-0002-4357-8756 |4 aut | |
245 | 1 | 0 | |a Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. | ||
650 | 4 | |a Fiber Bragg grating | |
650 | 4 | |a Metallization | |
650 | 4 | |a Magnetron sputtering | |
650 | 4 | |a Electroplating | |
650 | 4 | |a Thermal sensing | |
650 | 4 | |a Temperature response | |
650 | 4 | |a Three-phase asynchronous motor | |
700 | 1 | |a Liu, Mingyao |e verfasserin |4 aut | |
700 | 1 | |a Song, Han |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jingliang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Yihang |e verfasserin |4 aut | |
700 | 1 | |a Chen, Xiaochuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 215 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:215 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 215 |
author_variant |
c l cl m l ml h s hs j w jw y w yw x c xc |
---|---|
matchkey_str |
article:18792189:2023----::hrasnigefracaayipeaainnapiai |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijheatmasstransfer.2023.124514 doi (DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Cong verfasserin (orcid)0000-0002-4357-8756 aut Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor Liu, Mingyao verfasserin aut Song, Han verfasserin aut Wang, Jingliang verfasserin aut Wu, Yihang verfasserin aut Chen, Xiaochuan verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 215 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:215 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 215 |
spelling |
10.1016/j.ijheatmasstransfer.2023.124514 doi (DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Cong verfasserin (orcid)0000-0002-4357-8756 aut Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor Liu, Mingyao verfasserin aut Song, Han verfasserin aut Wang, Jingliang verfasserin aut Wu, Yihang verfasserin aut Chen, Xiaochuan verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 215 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:215 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 215 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2023.124514 doi (DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Cong verfasserin (orcid)0000-0002-4357-8756 aut Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor Liu, Mingyao verfasserin aut Song, Han verfasserin aut Wang, Jingliang verfasserin aut Wu, Yihang verfasserin aut Chen, Xiaochuan verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 215 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:215 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 215 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2023.124514 doi (DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Cong verfasserin (orcid)0000-0002-4357-8756 aut Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor Liu, Mingyao verfasserin aut Song, Han verfasserin aut Wang, Jingliang verfasserin aut Wu, Yihang verfasserin aut Chen, Xiaochuan verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 215 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:215 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 215 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2023.124514 doi (DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Cong verfasserin (orcid)0000-0002-4357-8756 aut Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor Liu, Mingyao verfasserin aut Song, Han verfasserin aut Wang, Jingliang verfasserin aut Wu, Yihang verfasserin aut Chen, Xiaochuan verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 215 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:215 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 215 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 215 volume:215 |
sourceStr |
Enthalten in International journal of heat and mass transfer 215 volume:215 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Li, Cong @@aut@@ Liu, Mingyao @@aut@@ Song, Han @@aut@@ Wang, Jingliang @@aut@@ Wu, Yihang @@aut@@ Chen, Xiaochuan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV062349880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062349880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927084913.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230830s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062349880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00659-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4357-8756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber Bragg grating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetron sputtering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroplating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-phase asynchronous motor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Mingyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yihang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaochuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">215</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:215</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">215</subfield></datafield></record></collection>
|
author |
Li, Cong |
spellingShingle |
Li, Cong ddc 620 bkl 50.38 misc Fiber Bragg grating misc Metallization misc Magnetron sputtering misc Electroplating misc Thermal sensing misc Temperature response misc Three-phase asynchronous motor Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
authorStr |
Li, Cong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 VZ 50.38 bkl Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG Fiber Bragg grating Metallization Magnetron sputtering Electroplating Thermal sensing Temperature response Three-phase asynchronous motor |
topic |
ddc 620 bkl 50.38 misc Fiber Bragg grating misc Metallization misc Magnetron sputtering misc Electroplating misc Thermal sensing misc Temperature response misc Three-phase asynchronous motor |
topic_unstemmed |
ddc 620 bkl 50.38 misc Fiber Bragg grating misc Metallization misc Magnetron sputtering misc Electroplating misc Thermal sensing misc Temperature response misc Three-phase asynchronous motor |
topic_browse |
ddc 620 bkl 50.38 misc Fiber Bragg grating misc Metallization misc Magnetron sputtering misc Electroplating misc Thermal sensing misc Temperature response misc Three-phase asynchronous motor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
ctrlnum |
(DE-627)ELV062349880 (ELSEVIER)S0017-9310(23)00659-2 |
title_full |
Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
author_sort |
Li, Cong |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Cong Liu, Mingyao Song, Han Wang, Jingliang Wu, Yihang Chen, Xiaochuan |
container_volume |
215 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Cong |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2023.124514 |
normlink |
(ORCID)0000-0002-4357-8756 |
normlink_prefix_str_mv |
(orcid)0000-0002-4357-8756 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
thermal sensing performance analysis, preparation and application of bimetallic layer mfbg |
title_auth |
Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
abstract |
The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. |
abstractGer |
The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. |
abstract_unstemmed |
The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG |
remote_bool |
true |
author2 |
Liu, Mingyao Song, Han Wang, Jingliang Wu, Yihang Chen, Xiaochuan |
author2Str |
Liu, Mingyao Song, Han Wang, Jingliang Wu, Yihang Chen, Xiaochuan |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2023.124514 |
up_date |
2024-07-06T18:40:33.427Z |
_version_ |
1803856100384047104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062349880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927084913.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230830s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124514</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062349880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00659-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4357-8756</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal sensing performance analysis, preparation and application of bimetallic layer MFBG</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The FBG(fiber Bragg grating) can be embedded in metal to form smart structure, and to protect the FBG, the surface can be coated with high melting point metal such as Ni. MFBG(metalized FBG) will affect the temperature sensing performance of the FBG. In this paper, the thermal sensing performance of MFBG with single and double metal layers is investigated and the main factors affecting its temperature sensitivity and temperature response are analyzed. The thermal sensitivity of the MFBG gradually stabilizes as the thickness of the metal layer increases. The Ni-Ti MFBG (double-layer MFBG with Ni as the outer metal and Ti as the inner metal) was fabricated by magnetron sputtering and electroplating thickening, and a comparative thermal sensing performance experiment was conducted together with the bare FBG. Metallization of the FBG can improve the temperature sensitivity of the FBG. Samples with different metal layer thicknesses were subjected to thermal tests from 0 to 70 °C, the obtained data verified the soundness of the presented model. To verify the temperature sensing performance of the prepared Ni-Ti MFBG, it was embedded in a three-phase induction motor and the internal temperature of the motor was monitored. The experiments show that the prepared Ni-Ti MFBG has good temperature sensing performance and can accurately sense the motor temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber Bragg grating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metallization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetron sputtering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electroplating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature response</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-phase asynchronous motor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Mingyao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jingliang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Yihang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaochuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">215</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:215</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">215</subfield></datafield></record></collection>
|
score |
7.402629 |