Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays
This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control scheme...
Ausführliche Beschreibung
Autor*in: |
Wang, Shasha [verfasserIn] Jian, Jigui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chaos, solitons & fractals - Amsterdam [u.a.] : Elsevier Science, 1991, 174 |
---|---|
Übergeordnetes Werk: |
volume:174 |
DOI / URN: |
10.1016/j.chaos.2023.113790 |
---|
Katalog-ID: |
ELV062452541 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062452541 | ||
003 | DE-627 | ||
005 | 20230928120305.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230901s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.chaos.2023.113790 |2 doi | |
035 | |a (DE-627)ELV062452541 | ||
035 | |a (ELSEVIER)S0960-0779(23)00691-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 30.20 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Wang, Shasha |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. | ||
650 | 4 | |a Fractional-order | |
650 | 4 | |a Memristor | |
650 | 4 | |a Competitive neural network | |
650 | 4 | |a Predefined-time synchronization | |
650 | 4 | |a Piecewise Lyapunov function | |
700 | 1 | |a Jian, Jigui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chaos, solitons & fractals |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 174 |h Online-Ressource |w (DE-627)314118497 |w (DE-600)2003919-0 |w (DE-576)094504040 |x 1873-2887 |7 nnns |
773 | 1 | 8 | |g volume:174 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 30.20 |j Nichtlineare Dynamik |q VZ |
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 174 |
author_variant |
s w sw j j jj |
---|---|
matchkey_str |
article:18732887:2023----::rdfndieycrnztoofatoaodrersieopttvnuan |
hierarchy_sort_str |
2023 |
bklnumber |
30.20 31.00 |
publishDate |
2023 |
allfields |
10.1016/j.chaos.2023.113790 doi (DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 DE-627 ger DE-627 rda eng 510 VZ 30.20 bkl 31.00 bkl Wang, Shasha verfasserin aut Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function Jian, Jigui verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 174 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:174 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 174 |
spelling |
10.1016/j.chaos.2023.113790 doi (DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 DE-627 ger DE-627 rda eng 510 VZ 30.20 bkl 31.00 bkl Wang, Shasha verfasserin aut Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function Jian, Jigui verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 174 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:174 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 174 |
allfields_unstemmed |
10.1016/j.chaos.2023.113790 doi (DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 DE-627 ger DE-627 rda eng 510 VZ 30.20 bkl 31.00 bkl Wang, Shasha verfasserin aut Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function Jian, Jigui verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 174 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:174 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 174 |
allfieldsGer |
10.1016/j.chaos.2023.113790 doi (DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 DE-627 ger DE-627 rda eng 510 VZ 30.20 bkl 31.00 bkl Wang, Shasha verfasserin aut Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function Jian, Jigui verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 174 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:174 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 174 |
allfieldsSound |
10.1016/j.chaos.2023.113790 doi (DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 DE-627 ger DE-627 rda eng 510 VZ 30.20 bkl 31.00 bkl Wang, Shasha verfasserin aut Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function Jian, Jigui verfasserin aut Enthalten in Chaos, solitons & fractals Amsterdam [u.a.] : Elsevier Science, 1991 174 Online-Ressource (DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 1873-2887 nnns volume:174 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 30.20 Nichtlineare Dynamik VZ 31.00 Mathematik: Allgemeines VZ AR 174 |
language |
English |
source |
Enthalten in Chaos, solitons & fractals 174 volume:174 |
sourceStr |
Enthalten in Chaos, solitons & fractals 174 volume:174 |
format_phy_str_mv |
Article |
bklname |
Nichtlineare Dynamik Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Chaos, solitons & fractals |
authorswithroles_txt_mv |
Wang, Shasha @@aut@@ Jian, Jigui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
314118497 |
dewey-sort |
3510 |
id |
ELV062452541 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062452541</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928120305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chaos.2023.113790</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062452541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-0779(23)00691-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional-order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Competitive neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predefined-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise Lyapunov function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jian, Jigui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chaos, solitons & fractals</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">174</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)314118497</subfield><subfield code="w">(DE-600)2003919-0</subfield><subfield code="w">(DE-576)094504040</subfield><subfield code="x">1873-2887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield></datafield></record></collection>
|
author |
Wang, Shasha |
spellingShingle |
Wang, Shasha ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order misc Memristor misc Competitive neural network misc Predefined-time synchronization misc Piecewise Lyapunov function Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
authorStr |
Wang, Shasha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)314118497 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-2887 |
topic_title |
510 VZ 30.20 bkl 31.00 bkl Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays Fractional-order Memristor Competitive neural network Predefined-time synchronization Piecewise Lyapunov function |
topic |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order misc Memristor misc Competitive neural network misc Predefined-time synchronization misc Piecewise Lyapunov function |
topic_unstemmed |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order misc Memristor misc Competitive neural network misc Predefined-time synchronization misc Piecewise Lyapunov function |
topic_browse |
ddc 510 bkl 30.20 bkl 31.00 misc Fractional-order misc Memristor misc Competitive neural network misc Predefined-time synchronization misc Piecewise Lyapunov function |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chaos, solitons & fractals |
hierarchy_parent_id |
314118497 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Chaos, solitons & fractals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)314118497 (DE-600)2003919-0 (DE-576)094504040 |
title |
Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
ctrlnum |
(DE-627)ELV062452541 (ELSEVIER)S0960-0779(23)00691-4 |
title_full |
Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
author_sort |
Wang, Shasha |
journal |
Chaos, solitons & fractals |
journalStr |
Chaos, solitons & fractals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Shasha Jian, Jigui |
container_volume |
174 |
class |
510 VZ 30.20 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Shasha |
doi_str_mv |
10.1016/j.chaos.2023.113790 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
title_auth |
Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
abstract |
This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. |
abstractGer |
This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. |
abstract_unstemmed |
This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays |
remote_bool |
true |
author2 |
Jian, Jigui |
author2Str |
Jian, Jigui |
ppnlink |
314118497 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.chaos.2023.113790 |
up_date |
2024-07-06T18:48:36.493Z |
_version_ |
1803856606914412544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062452541</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928120305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.chaos.2023.113790</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062452541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-0779(23)00691-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shasha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article focuses on the predefined-time synchronization (PTS) of fractional-order memristive competitive neural networks (FMCNNs) with time-varying delays. According to the two-layer structural characteristics of CNNs, two kinds of distinctive discontinuous bilayer predefined-time control schemes with the fractional integrals are proposed: one is the double controllers based on piecewise Lyapunov function and the other is a controller with Lyapunov function and exponential function. Using the predefined-time stability theorems and applying fractional-order differential inequalities and other inequality techniques, some effective criteria are obtained to assure the PTS of two FMCNNs in terms of algebraic inequalities, which are very succinct and avert complicated calculations. Besides, the predefined time (PT) is set to an arbitrary positive parameter in these controllers and is entirely irrelevant to the initial values. Finally, two concrete examples are given to verify the theoretical results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional-order</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Competitive neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predefined-time synchronization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise Lyapunov function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jian, Jigui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chaos, solitons & fractals</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">174</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)314118497</subfield><subfield code="w">(DE-600)2003919-0</subfield><subfield code="w">(DE-576)094504040</subfield><subfield code="x">1873-2887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.20</subfield><subfield code="j">Nichtlineare Dynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield></datafield></record></collection>
|
score |
7.4012136 |