An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time
The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group....
Ausführliche Beschreibung
Autor*in: |
Wang, Yuhang [verfasserIn] Han, Yuyan [verfasserIn] Wang, Yuting [verfasserIn] Li, Junqing [verfasserIn] Gao, Kaizhou [verfasserIn] Liu, Yiping [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Expert systems with applications - Amsterdam [u.a.] : Elsevier Science, 1990, 233 |
---|---|
Übergeordnetes Werk: |
volume:233 |
DOI / URN: |
10.1016/j.eswa.2023.120909 |
---|
Katalog-ID: |
ELV06247698X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06247698X | ||
003 | DE-627 | ||
005 | 20231210093216.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230901s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2023.120909 |2 doi | |
035 | |a (DE-627)ELV06247698X | ||
035 | |a (ELSEVIER)S0957-4174(23)01411-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Wang, Yuhang |e verfasserin |0 (orcid)0000-0003-1131-9167 |4 aut | |
245 | 1 | 0 | |a An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. | ||
650 | 4 | |a Group scheduling | |
650 | 4 | |a Distributed flow shop | |
650 | 4 | |a Iterated greedy algorithm | |
650 | 4 | |a Makespan | |
700 | 1 | |a Han, Yuyan |e verfasserin |0 (orcid)0000-0001-8963-5421 |4 aut | |
700 | 1 | |a Wang, Yuting |e verfasserin |0 (orcid)0000-0002-1562-2764 |4 aut | |
700 | 1 | |a Li, Junqing |e verfasserin |0 (orcid)0000-0002-3617-6708 |4 aut | |
700 | 1 | |a Gao, Kaizhou |e verfasserin |0 (orcid)0000-0002-9252-6928 |4 aut | |
700 | 1 | |a Liu, Yiping |e verfasserin |0 (orcid)0000-0001-7340-2551 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Expert systems with applications |d Amsterdam [u.a.] : Elsevier Science, 1990 |g 233 |h Online-Ressource |w (DE-627)320577961 |w (DE-600)2017237-0 |w (DE-576)11481807X |7 nnns |
773 | 1 | 8 | |g volume:233 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |q VZ |
951 | |a AR | ||
952 | |d 233 |
author_variant |
y w yw y h yh y w yw j l jl k g kg y l yl |
---|---|
matchkey_str |
wangyuhanghanyuyanwangyutinglijunqinggao:2023----:nfetvtotgieaegedagrtmodsrbtdlwhprush |
hierarchy_sort_str |
2023 |
bklnumber |
54.72 |
publishDate |
2023 |
allfields |
10.1016/j.eswa.2023.120909 doi (DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wang, Yuhang verfasserin (orcid)0000-0003-1131-9167 aut An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. Group scheduling Distributed flow shop Iterated greedy algorithm Makespan Han, Yuyan verfasserin (orcid)0000-0001-8963-5421 aut Wang, Yuting verfasserin (orcid)0000-0002-1562-2764 aut Li, Junqing verfasserin (orcid)0000-0002-3617-6708 aut Gao, Kaizhou verfasserin (orcid)0000-0002-9252-6928 aut Liu, Yiping verfasserin (orcid)0000-0001-7340-2551 aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 233 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 233 |
spelling |
10.1016/j.eswa.2023.120909 doi (DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wang, Yuhang verfasserin (orcid)0000-0003-1131-9167 aut An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. Group scheduling Distributed flow shop Iterated greedy algorithm Makespan Han, Yuyan verfasserin (orcid)0000-0001-8963-5421 aut Wang, Yuting verfasserin (orcid)0000-0002-1562-2764 aut Li, Junqing verfasserin (orcid)0000-0002-3617-6708 aut Gao, Kaizhou verfasserin (orcid)0000-0002-9252-6928 aut Liu, Yiping verfasserin (orcid)0000-0001-7340-2551 aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 233 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 233 |
allfields_unstemmed |
10.1016/j.eswa.2023.120909 doi (DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wang, Yuhang verfasserin (orcid)0000-0003-1131-9167 aut An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. Group scheduling Distributed flow shop Iterated greedy algorithm Makespan Han, Yuyan verfasserin (orcid)0000-0001-8963-5421 aut Wang, Yuting verfasserin (orcid)0000-0002-1562-2764 aut Li, Junqing verfasserin (orcid)0000-0002-3617-6708 aut Gao, Kaizhou verfasserin (orcid)0000-0002-9252-6928 aut Liu, Yiping verfasserin (orcid)0000-0001-7340-2551 aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 233 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 233 |
allfieldsGer |
10.1016/j.eswa.2023.120909 doi (DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wang, Yuhang verfasserin (orcid)0000-0003-1131-9167 aut An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. Group scheduling Distributed flow shop Iterated greedy algorithm Makespan Han, Yuyan verfasserin (orcid)0000-0001-8963-5421 aut Wang, Yuting verfasserin (orcid)0000-0002-1562-2764 aut Li, Junqing verfasserin (orcid)0000-0002-3617-6708 aut Gao, Kaizhou verfasserin (orcid)0000-0002-9252-6928 aut Liu, Yiping verfasserin (orcid)0000-0001-7340-2551 aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 233 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 233 |
allfieldsSound |
10.1016/j.eswa.2023.120909 doi (DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 DE-627 ger DE-627 rda eng 004 VZ 54.72 bkl Wang, Yuhang verfasserin (orcid)0000-0003-1131-9167 aut An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. Group scheduling Distributed flow shop Iterated greedy algorithm Makespan Han, Yuyan verfasserin (orcid)0000-0001-8963-5421 aut Wang, Yuting verfasserin (orcid)0000-0002-1562-2764 aut Li, Junqing verfasserin (orcid)0000-0002-3617-6708 aut Gao, Kaizhou verfasserin (orcid)0000-0002-9252-6928 aut Liu, Yiping verfasserin (orcid)0000-0001-7340-2551 aut Enthalten in Expert systems with applications Amsterdam [u.a.] : Elsevier Science, 1990 233 Online-Ressource (DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X nnns volume:233 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.72 Künstliche Intelligenz VZ AR 233 |
language |
English |
source |
Enthalten in Expert systems with applications 233 volume:233 |
sourceStr |
Enthalten in Expert systems with applications 233 volume:233 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Group scheduling Distributed flow shop Iterated greedy algorithm Makespan |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Expert systems with applications |
authorswithroles_txt_mv |
Wang, Yuhang @@aut@@ Han, Yuyan @@aut@@ Wang, Yuting @@aut@@ Li, Junqing @@aut@@ Gao, Kaizhou @@aut@@ Liu, Yiping @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320577961 |
dewey-sort |
14 |
id |
ELV06247698X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06247698X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231210093216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.120909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06247698X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)01411-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yuhang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1131-9167</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed flow shop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated greedy algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Makespan</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Yuyan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8963-5421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuting</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1562-2764</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3617-6708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Kaizhou</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9252-6928</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7340-2551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">233</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield></datafield></record></collection>
|
author |
Wang, Yuhang |
spellingShingle |
Wang, Yuhang ddc 004 bkl 54.72 misc Group scheduling misc Distributed flow shop misc Iterated greedy algorithm misc Makespan An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
authorStr |
Wang, Yuhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320577961 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.72 bkl An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time Group scheduling Distributed flow shop Iterated greedy algorithm Makespan |
topic |
ddc 004 bkl 54.72 misc Group scheduling misc Distributed flow shop misc Iterated greedy algorithm misc Makespan |
topic_unstemmed |
ddc 004 bkl 54.72 misc Group scheduling misc Distributed flow shop misc Iterated greedy algorithm misc Makespan |
topic_browse |
ddc 004 bkl 54.72 misc Group scheduling misc Distributed flow shop misc Iterated greedy algorithm misc Makespan |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Expert systems with applications |
hierarchy_parent_id |
320577961 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Expert systems with applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320577961 (DE-600)2017237-0 (DE-576)11481807X |
title |
An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
ctrlnum |
(DE-627)ELV06247698X (ELSEVIER)S0957-4174(23)01411-2 |
title_full |
An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
author_sort |
Wang, Yuhang |
journal |
Expert systems with applications |
journalStr |
Expert systems with applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Yuhang Han, Yuyan Wang, Yuting Li, Junqing Gao, Kaizhou Liu, Yiping |
container_volume |
233 |
class |
004 VZ 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yuhang |
doi_str_mv |
10.1016/j.eswa.2023.120909 |
normlink |
(ORCID)0000-0003-1131-9167 (ORCID)0000-0001-8963-5421 (ORCID)0000-0002-1562-2764 (ORCID)0000-0002-3617-6708 (ORCID)0000-0002-9252-6928 (ORCID)0000-0001-7340-2551 |
normlink_prefix_str_mv |
(orcid)0000-0003-1131-9167 (orcid)0000-0001-8963-5421 (orcid)0000-0002-1562-2764 (orcid)0000-0002-3617-6708 (orcid)0000-0002-9252-6928 (orcid)0000-0001-7340-2551 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
an effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
title_auth |
An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
abstract |
The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. |
abstractGer |
The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. |
abstract_unstemmed |
The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time |
remote_bool |
true |
author2 |
Han, Yuyan Wang, Yuting Li, Junqing Gao, Kaizhou Liu, Yiping |
author2Str |
Han, Yuyan Wang, Yuting Li, Junqing Gao, Kaizhou Liu, Yiping |
ppnlink |
320577961 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.eswa.2023.120909 |
up_date |
2024-07-06T18:50:35.361Z |
_version_ |
1803856731555495936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06247698X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231210093216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2023.120909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06247698X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(23)01411-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yuhang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1131-9167</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An effective two-stage iterated greedy algorithm for distributed flowshop group scheduling problem with setup time</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The distributed flow shop group scheduling problem (DFGSP) has wide industrial applications. Due to the strong coupling of DFGSP, three issues should be solved, such as assigning groups to factories, arranging the sequence of groups in each factory and scheduling the sequence of jobs in each group. Meanwhile, the calculation for the objective has a high time complexity. To solve the above problems, we first build a mixed-integer linear programming model of DFGSP and verify its correctness by using the Gurobi solver. By exploring the implicit characteristics of the problem, two rapid evaluation methods based on group insertion and job insertion are designed to accelerate the evaluation of the objective. Then, an effective two-stage iterated greedy algorithm (tIGA) is proposed to solve the above three coupled subproblem. In the proposed tIGA, two intra-factory and inter-factory cooperative neighborhood search strategies and two intra-group and inter-group enhanced search strategies are proposed, respectively, to improve the search breadth and depth. The results of comprehensive statistical experiments on 810 test instances show that the proposed algorithm significantly outperforms the compared ones in terms of objective values and relative percentage increase values, and demonstrates the effectiveness of the proposed tIGA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group scheduling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed flow shop</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterated greedy algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Makespan</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Yuyan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8963-5421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuting</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1562-2764</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junqing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3617-6708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Kaizhou</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9252-6928</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7340-2551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Expert systems with applications</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1990</subfield><subfield code="g">233</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320577961</subfield><subfield code="w">(DE-600)2017237-0</subfield><subfield code="w">(DE-576)11481807X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:233</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">233</subfield></datafield></record></collection>
|
score |
7.402915 |