Determination of watermelon soluble solids content based on visible/near infrared spectroscopy with convolutional neural network

The soluble solids content(SSC)of fruits is an essential indicator of fruit taste and flavor. The near-infrared spectroscopy (NIRS) is widely used in fruit SSC detection. A common method to deal with such predictive modelling is the partial least-squares (PLSR). Wavelength selection algorithms are o...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Guantian [verfasserIn]

Jiang, Xiaogang [verfasserIn]

Li, Xiong [verfasserIn]

Liu, Yande [verfasserIn]

Rao, Yu [verfasserIn]

Zhang, Yu [verfasserIn]

Xin, Manyu [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Near-infrared spectroscopy

Watermelon SSC

Prediction

1D-CNN

Feature visualization

Übergeordnetes Werk:

Enthalten in: Infrared physics & technology - Amsterdam [u.a.] : Elsevier Science, 1994, 133

Übergeordnetes Werk:

volume:133

DOI / URN:

10.1016/j.infrared.2023.104825

Katalog-ID:

ELV062487264

Nicht das Richtige dabei?

Schreiben Sie uns!