Progressive weakening within the overriding plate during dual inward dipping subduction
The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes...
Ausführliche Beschreibung
Autor*in: |
Lei, Zhibin [verfasserIn] Davies, J. Huw [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Tectonophysics - Amsterdam [u.a.] : Elsevier, 1964, 863 |
---|---|
Übergeordnetes Werk: |
volume:863 |
DOI / URN: |
10.1016/j.tecto.2023.230004 |
---|
Katalog-ID: |
ELV062617206 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062617206 | ||
003 | DE-627 | ||
005 | 20230927075104.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230904s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tecto.2023.230004 |2 doi | |
035 | |a (DE-627)ELV062617206 | ||
035 | |a (ELSEVIER)S0040-1951(23)00302-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.36 |2 bkl | ||
084 | |a 38.58 |2 bkl | ||
100 | 1 | |a Lei, Zhibin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Progressive weakening within the overriding plate during dual inward dipping subduction |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. | ||
650 | 4 | |a Dual inward dipping subduction | |
650 | 4 | |a Composite rheology | |
650 | 4 | |a Viscosity reduction | |
650 | 4 | |a Strain localization | |
650 | 4 | |a Spreading extension | |
700 | 1 | |a Davies, J. Huw |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Tectonophysics |d Amsterdam [u.a.] : Elsevier, 1964 |g 863 |h Online-Ressource |w (DE-627)320505952 |w (DE-600)2012830-7 |w (DE-576)098474197 |x 1879-3266 |7 nnns |
773 | 1 | 8 | |g volume:863 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.36 |j Tektonik |q VZ |
936 | b | k | |a 38.58 |j Geomechanik |q VZ |
951 | |a AR | ||
952 | |d 863 |
author_variant |
z l zl j h d jh jhd |
---|---|
matchkey_str |
article:18793266:2023----::rgesvwaeigihnhoerdnpaeuiguln |
hierarchy_sort_str |
2023 |
bklnumber |
38.36 38.58 |
publishDate |
2023 |
allfields |
10.1016/j.tecto.2023.230004 doi (DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 DE-627 ger DE-627 rda eng 550 VZ 38.36 bkl 38.58 bkl Lei, Zhibin verfasserin aut Progressive weakening within the overriding plate during dual inward dipping subduction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension Davies, J. Huw verfasserin aut Enthalten in Tectonophysics Amsterdam [u.a.] : Elsevier, 1964 863 Online-Ressource (DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 1879-3266 nnns volume:863 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.36 Tektonik VZ 38.58 Geomechanik VZ AR 863 |
spelling |
10.1016/j.tecto.2023.230004 doi (DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 DE-627 ger DE-627 rda eng 550 VZ 38.36 bkl 38.58 bkl Lei, Zhibin verfasserin aut Progressive weakening within the overriding plate during dual inward dipping subduction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension Davies, J. Huw verfasserin aut Enthalten in Tectonophysics Amsterdam [u.a.] : Elsevier, 1964 863 Online-Ressource (DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 1879-3266 nnns volume:863 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.36 Tektonik VZ 38.58 Geomechanik VZ AR 863 |
allfields_unstemmed |
10.1016/j.tecto.2023.230004 doi (DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 DE-627 ger DE-627 rda eng 550 VZ 38.36 bkl 38.58 bkl Lei, Zhibin verfasserin aut Progressive weakening within the overriding plate during dual inward dipping subduction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension Davies, J. Huw verfasserin aut Enthalten in Tectonophysics Amsterdam [u.a.] : Elsevier, 1964 863 Online-Ressource (DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 1879-3266 nnns volume:863 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.36 Tektonik VZ 38.58 Geomechanik VZ AR 863 |
allfieldsGer |
10.1016/j.tecto.2023.230004 doi (DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 DE-627 ger DE-627 rda eng 550 VZ 38.36 bkl 38.58 bkl Lei, Zhibin verfasserin aut Progressive weakening within the overriding plate during dual inward dipping subduction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension Davies, J. Huw verfasserin aut Enthalten in Tectonophysics Amsterdam [u.a.] : Elsevier, 1964 863 Online-Ressource (DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 1879-3266 nnns volume:863 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.36 Tektonik VZ 38.58 Geomechanik VZ AR 863 |
allfieldsSound |
10.1016/j.tecto.2023.230004 doi (DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 DE-627 ger DE-627 rda eng 550 VZ 38.36 bkl 38.58 bkl Lei, Zhibin verfasserin aut Progressive weakening within the overriding plate during dual inward dipping subduction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension Davies, J. Huw verfasserin aut Enthalten in Tectonophysics Amsterdam [u.a.] : Elsevier, 1964 863 Online-Ressource (DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 1879-3266 nnns volume:863 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.36 Tektonik VZ 38.58 Geomechanik VZ AR 863 |
language |
English |
source |
Enthalten in Tectonophysics 863 volume:863 |
sourceStr |
Enthalten in Tectonophysics 863 volume:863 |
format_phy_str_mv |
Article |
bklname |
Tektonik Geomechanik |
institution |
findex.gbv.de |
topic_facet |
Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Tectonophysics |
authorswithroles_txt_mv |
Lei, Zhibin @@aut@@ Davies, J. Huw @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505952 |
dewey-sort |
3550 |
id |
ELV062617206 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062617206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927075104.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230904s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tecto.2023.230004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062617206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0040-1951(23)00302-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.58</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lei, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progressive weakening within the overriding plate during dual inward dipping subduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual inward dipping subduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading extension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davies, J. Huw</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tectonophysics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1964</subfield><subfield code="g">863</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505952</subfield><subfield code="w">(DE-600)2012830-7</subfield><subfield code="w">(DE-576)098474197</subfield><subfield code="x">1879-3266</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:863</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.36</subfield><subfield code="j">Tektonik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.58</subfield><subfield code="j">Geomechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">863</subfield></datafield></record></collection>
|
author |
Lei, Zhibin |
spellingShingle |
Lei, Zhibin ddc 550 bkl 38.36 bkl 38.58 misc Dual inward dipping subduction misc Composite rheology misc Viscosity reduction misc Strain localization misc Spreading extension Progressive weakening within the overriding plate during dual inward dipping subduction |
authorStr |
Lei, Zhibin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505952 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3266 |
topic_title |
550 VZ 38.36 bkl 38.58 bkl Progressive weakening within the overriding plate during dual inward dipping subduction Dual inward dipping subduction Composite rheology Viscosity reduction Strain localization Spreading extension |
topic |
ddc 550 bkl 38.36 bkl 38.58 misc Dual inward dipping subduction misc Composite rheology misc Viscosity reduction misc Strain localization misc Spreading extension |
topic_unstemmed |
ddc 550 bkl 38.36 bkl 38.58 misc Dual inward dipping subduction misc Composite rheology misc Viscosity reduction misc Strain localization misc Spreading extension |
topic_browse |
ddc 550 bkl 38.36 bkl 38.58 misc Dual inward dipping subduction misc Composite rheology misc Viscosity reduction misc Strain localization misc Spreading extension |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tectonophysics |
hierarchy_parent_id |
320505952 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Tectonophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505952 (DE-600)2012830-7 (DE-576)098474197 |
title |
Progressive weakening within the overriding plate during dual inward dipping subduction |
ctrlnum |
(DE-627)ELV062617206 (ELSEVIER)S0040-1951(23)00302-5 |
title_full |
Progressive weakening within the overriding plate during dual inward dipping subduction |
author_sort |
Lei, Zhibin |
journal |
Tectonophysics |
journalStr |
Tectonophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Lei, Zhibin Davies, J. Huw |
container_volume |
863 |
class |
550 VZ 38.36 bkl 38.58 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lei, Zhibin |
doi_str_mv |
10.1016/j.tecto.2023.230004 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
progressive weakening within the overriding plate during dual inward dipping subduction |
title_auth |
Progressive weakening within the overriding plate during dual inward dipping subduction |
abstract |
The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. |
abstractGer |
The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. |
abstract_unstemmed |
The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Progressive weakening within the overriding plate during dual inward dipping subduction |
remote_bool |
true |
author2 |
Davies, J. Huw |
author2Str |
Davies, J. Huw |
ppnlink |
320505952 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tecto.2023.230004 |
up_date |
2024-07-06T18:59:25.534Z |
_version_ |
1803857287484276736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062617206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927075104.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230904s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tecto.2023.230004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062617206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0040-1951(23)00302-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.58</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lei, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Progressive weakening within the overriding plate during dual inward dipping subduction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The evolution of dual inward dipping subduction (DIDS) is crucial to understand multiple slab interaction. Yet, how DIDS influences the thermo-mechanical behaviour of the overriding plate remains unclear, as previous DIDS investigations all applied a compositional or Newtonian rheology that excludes temperature dependency. Here we apply a composite rheology, including temperature dependent creep deformation mechanisms, in 2-D thermo-mechanical numerical modelling to investigate how DIDS modifies the rheological structure of the overriding plate. Three variables on plate sizes are investigated to understand what may control the maximum degree of plate weakening. We find that reducing the initial length or initial thickness of the overriding plate and increasing the initial thickness of the subducting plate can enhance the viscosity reduction within the overriding plate. The progressive weakening can result in a variety of stretching states ranging from 1) little or no lithosphere thinning and extension (<5% accumulation of strain), to 2) limited thermal lithosphere thinning (<30% accumulation of strain), and 3) localised rifting followed by spreading extension. Compared with single sided subduction, DIDS further reduces the magnitude of viscosity in the overriding plate. It does this by creating a dynamic fixed boundary condition for the overriding plate and forming a stronger upwelling mantle flow, both of which promote the progressive weakening in the overriding plate. The result implies that these generic DIDS effects are important aspects to consider to understand extension developed in natural DIDS cases. We also demonstrate that both temperature dependent creep rheologies and yielding deformation mechanism contribute significantly to the continuous viscosity reduction. The finding may also have a broader implication for more general processes that involve plate scale weakening, strain localisation and the formation of new plate boundaries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual inward dipping subduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscosity reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spreading extension</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davies, J. Huw</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tectonophysics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1964</subfield><subfield code="g">863</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505952</subfield><subfield code="w">(DE-600)2012830-7</subfield><subfield code="w">(DE-576)098474197</subfield><subfield code="x">1879-3266</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:863</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.36</subfield><subfield code="j">Tektonik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.58</subfield><subfield code="j">Geomechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">863</subfield></datafield></record></collection>
|
score |
7.4008827 |