Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles
In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to invest...
Ausführliche Beschreibung
Autor*in: |
Huang, Wei [verfasserIn] Deng, Jiaqin [verfasserIn] Liang, Jie [verfasserIn] Xia, Xinghui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 460 |
---|---|
Übergeordnetes Werk: |
volume:460 |
DOI / URN: |
10.1016/j.cej.2023.141838 |
---|
Katalog-ID: |
ELV062646427 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062646427 | ||
003 | DE-627 | ||
005 | 20231222083821.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230905s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2023.141838 |2 doi | |
035 | |a (DE-627)ELV062646427 | ||
035 | |a (ELSEVIER)S1385-8947(23)00569-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Huang, Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. | ||
650 | 4 | |a Microplastics | |
650 | 4 | |a Tire wear particles | |
650 | 4 | |a Aging | |
650 | 4 | |a Metal ion | |
650 | 4 | |a Adsorption mechanism | |
650 | 4 | |a Desorption | |
700 | 1 | |a Deng, Jiaqin |e verfasserin |4 aut | |
700 | 1 | |a Liang, Jie |e verfasserin |4 aut | |
700 | 1 | |a Xia, Xinghui |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 460 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:460 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 460 |
author_variant |
w h wh j d jd j l jl x x xx |
---|---|
matchkey_str |
article:18733212:2023----::oprsnfeddopinnhaecnetoamcolsisidgaalmcolsisnevrn |
hierarchy_sort_str |
2023 |
bklnumber |
58.10 |
publishDate |
2023 |
allfields |
10.1016/j.cej.2023.141838 doi (DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Huang, Wei verfasserin aut Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption Deng, Jiaqin verfasserin aut Liang, Jie verfasserin aut Xia, Xinghui verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 460 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:460 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 460 |
spelling |
10.1016/j.cej.2023.141838 doi (DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Huang, Wei verfasserin aut Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption Deng, Jiaqin verfasserin aut Liang, Jie verfasserin aut Xia, Xinghui verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 460 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:460 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 460 |
allfields_unstemmed |
10.1016/j.cej.2023.141838 doi (DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Huang, Wei verfasserin aut Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption Deng, Jiaqin verfasserin aut Liang, Jie verfasserin aut Xia, Xinghui verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 460 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:460 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 460 |
allfieldsGer |
10.1016/j.cej.2023.141838 doi (DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Huang, Wei verfasserin aut Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption Deng, Jiaqin verfasserin aut Liang, Jie verfasserin aut Xia, Xinghui verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 460 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:460 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 460 |
allfieldsSound |
10.1016/j.cej.2023.141838 doi (DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 DE-627 ger DE-627 rda eng 660 VZ 660 VZ 58.10 bkl Huang, Wei verfasserin aut Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption Deng, Jiaqin verfasserin aut Liang, Jie verfasserin aut Xia, Xinghui verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 460 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:460 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 58.10 Verfahrenstechnik: Allgemeines VZ AR 460 |
language |
English |
source |
Enthalten in The chemical engineering journal 460 volume:460 |
sourceStr |
Enthalten in The chemical engineering journal 460 volume:460 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Huang, Wei @@aut@@ Deng, Jiaqin @@aut@@ Liang, Jie @@aut@@ Xia, Xinghui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660 |
id |
ELV062646427 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062646427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222083821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.141838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062646427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)00569-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microplastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tire wear particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal ion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorption mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desorption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jiaqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Xinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">460</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:460</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">460</subfield></datafield></record></collection>
|
author |
Huang, Wei |
spellingShingle |
Huang, Wei ddc 660 bkl 58.10 misc Microplastics misc Tire wear particles misc Aging misc Metal ion misc Adsorption mechanism misc Desorption Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
authorStr |
Huang, Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660 VZ 58.10 bkl Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles Microplastics Tire wear particles Aging Metal ion Adsorption mechanism Desorption |
topic |
ddc 660 bkl 58.10 misc Microplastics misc Tire wear particles misc Aging misc Metal ion misc Adsorption mechanism misc Desorption |
topic_unstemmed |
ddc 660 bkl 58.10 misc Microplastics misc Tire wear particles misc Aging misc Metal ion misc Adsorption mechanism misc Desorption |
topic_browse |
ddc 660 bkl 58.10 misc Microplastics misc Tire wear particles misc Aging misc Metal ion misc Adsorption mechanism misc Desorption |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
ctrlnum |
(DE-627)ELV062646427 (ELSEVIER)S1385-8947(23)00569-7 |
title_full |
Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
author_sort |
Huang, Wei |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Huang, Wei Deng, Jiaqin Liang, Jie Xia, Xinghui |
container_volume |
460 |
class |
660 VZ 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Wei |
doi_str_mv |
10.1016/j.cej.2023.141838 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
title_auth |
Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
abstract |
In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. |
abstractGer |
In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. |
abstract_unstemmed |
In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles |
remote_bool |
true |
author2 |
Deng, Jiaqin Liang, Jie Xia, Xinghui |
author2Str |
Deng, Jiaqin Liang, Jie Xia, Xinghui |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2023.141838 |
up_date |
2024-07-06T19:02:02.974Z |
_version_ |
1803857452573130752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062646427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222083821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2023.141838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062646427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(23)00569-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the adsorption behavior of lead (Pb(II)) onto environmentally-relevant tire wear particles (TWP) gained by natural weathering and mechanical abrasion, ultraviolet-aged polylactic acid microplastics (UV-PLA), and ultraviolet-aged polystyrene microplastics (UV-PS) was compared to investigate the difference of representative microplastics between the adsorption capacity and mechanism. Our results indicated that the aging processes significantly improved the adsorption capacity to Pb(II), and TWP had the highest adsorption amount, followed the order by UV-PLA, UV-PS, PLA and PS. Electrostatic interaction and complexation of oxygen-containing functional groups played crucial roles in the adsorption of Pb(II) onto UV-PLA, the adsorption mechanisms of UV-PS involved electrostatic interaction, complexation and cation-π interaction, while adsorption of TWP was might dominated by the complexation of surface functional groups and properties of the complex rubber co-polymer. Interestingly, the low concentration of humic acid (HA) most significantly improved adsorption capacity of aged microplastics to Pb(II), otherwise it was severely suppressed at higher concentration of HA. Besides, the adsorption behavior of different binary systems between aged microplastics and suspended sediment to Pb(II) had complicated synergistic or suppressive effects with a concentration-dependent and polymer-dependent trend. Furthermore, UV-PLA had the far stronger desorption ability of Pb(II) than that of TWP and UV-PS, suggesting that metal-contaminated biodegradable microplastics posed the higher ecological risks to aquatic organisms. Desorption quantity and rates of Pb(II) from aged microplastics in the simulated sediment system were generally higher than those in turbulent water column. Collectively, these findings provide a wide insight into adsorption capacity and mechanisms of metal ions on the representative aged microplastics and the desorption behavior in complex aquatic environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microplastics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tire wear particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal ion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorption mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Desorption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jiaqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Xinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">460</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:460</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">460</subfield></datafield></record></collection>
|
score |
7.4003944 |