Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China
Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea mar...
Ausführliche Beschreibung
Autor*in: |
Qi, Ning [verfasserIn] Yang, Hao [verfasserIn] Shao, Guowen [verfasserIn] Chen, Riqiang [verfasserIn] Wu, Baoguo [verfasserIn] Xu, Bo [verfasserIn] Feng, Haikuan [verfasserIn] Yang, Guijun [verfasserIn] Zhao, Chunjiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers and electronics in agriculture - Amsterdam [u.a.] : Elsevier Science, 1985, 212 |
---|---|
Übergeordnetes Werk: |
volume:212 |
DOI / URN: |
10.1016/j.compag.2023.108108 |
---|
Katalog-ID: |
ELV062688944 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062688944 | ||
003 | DE-627 | ||
005 | 20230928074156.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230905s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compag.2023.108108 |2 doi | |
035 | |a (DE-627)ELV062688944 | ||
035 | |a (ELSEVIER)S0168-1699(23)00496-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 630 |a 640 |a 004 |q VZ |
084 | |a 48.03 |2 bkl | ||
100 | 1 | |a Qi, Ning |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. | ||
650 | 4 | |a Tea plantation mapping | |
650 | 4 | |a Multitemporal spectral features | |
650 | 4 | |a Remote sensing | |
700 | 1 | |a Yang, Hao |e verfasserin |4 aut | |
700 | 1 | |a Shao, Guowen |e verfasserin |4 aut | |
700 | 1 | |a Chen, Riqiang |e verfasserin |4 aut | |
700 | 1 | |a Wu, Baoguo |e verfasserin |4 aut | |
700 | 1 | |a Xu, Bo |e verfasserin |4 aut | |
700 | 1 | |a Feng, Haikuan |e verfasserin |4 aut | |
700 | 1 | |a Yang, Guijun |e verfasserin |0 (orcid)0000-0002-6425-8321 |4 aut | |
700 | 1 | |a Zhao, Chunjiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers and electronics in agriculture |d Amsterdam [u.a.] : Elsevier Science, 1985 |g 212 |h Online-Ressource |w (DE-627)320567826 |w (DE-600)2016151-7 |w (DE-576)090955684 |x 1872-7107 |7 nnns |
773 | 1 | 8 | |g volume:212 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.03 |j Methoden und Techniken der Land- und Forstwirtschaft |q VZ |
951 | |a AR | ||
952 | |d 212 |
author_variant |
n q nq h y hy g s gs r c rc b w bw b x bx h f hf g y gy c z cz |
---|---|
matchkey_str |
article:18727107:2023----::apntalnainuiguttmoasetafauebhroiesnie2n |
hierarchy_sort_str |
2023 |
bklnumber |
48.03 |
publishDate |
2023 |
allfields |
10.1016/j.compag.2023.108108 doi (DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Qi, Ning verfasserin aut Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. Tea plantation mapping Multitemporal spectral features Remote sensing Yang, Hao verfasserin aut Shao, Guowen verfasserin aut Chen, Riqiang verfasserin aut Wu, Baoguo verfasserin aut Xu, Bo verfasserin aut Feng, Haikuan verfasserin aut Yang, Guijun verfasserin (orcid)0000-0002-6425-8321 aut Zhao, Chunjiang verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 212 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 212 |
spelling |
10.1016/j.compag.2023.108108 doi (DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Qi, Ning verfasserin aut Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. Tea plantation mapping Multitemporal spectral features Remote sensing Yang, Hao verfasserin aut Shao, Guowen verfasserin aut Chen, Riqiang verfasserin aut Wu, Baoguo verfasserin aut Xu, Bo verfasserin aut Feng, Haikuan verfasserin aut Yang, Guijun verfasserin (orcid)0000-0002-6425-8321 aut Zhao, Chunjiang verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 212 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 212 |
allfields_unstemmed |
10.1016/j.compag.2023.108108 doi (DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Qi, Ning verfasserin aut Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. Tea plantation mapping Multitemporal spectral features Remote sensing Yang, Hao verfasserin aut Shao, Guowen verfasserin aut Chen, Riqiang verfasserin aut Wu, Baoguo verfasserin aut Xu, Bo verfasserin aut Feng, Haikuan verfasserin aut Yang, Guijun verfasserin (orcid)0000-0002-6425-8321 aut Zhao, Chunjiang verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 212 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 212 |
allfieldsGer |
10.1016/j.compag.2023.108108 doi (DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Qi, Ning verfasserin aut Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. Tea plantation mapping Multitemporal spectral features Remote sensing Yang, Hao verfasserin aut Shao, Guowen verfasserin aut Chen, Riqiang verfasserin aut Wu, Baoguo verfasserin aut Xu, Bo verfasserin aut Feng, Haikuan verfasserin aut Yang, Guijun verfasserin (orcid)0000-0002-6425-8321 aut Zhao, Chunjiang verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 212 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 212 |
allfieldsSound |
10.1016/j.compag.2023.108108 doi (DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 DE-627 ger DE-627 rda eng 620 630 640 004 VZ 48.03 bkl Qi, Ning verfasserin aut Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. Tea plantation mapping Multitemporal spectral features Remote sensing Yang, Hao verfasserin aut Shao, Guowen verfasserin aut Chen, Riqiang verfasserin aut Wu, Baoguo verfasserin aut Xu, Bo verfasserin aut Feng, Haikuan verfasserin aut Yang, Guijun verfasserin (orcid)0000-0002-6425-8321 aut Zhao, Chunjiang verfasserin aut Enthalten in Computers and electronics in agriculture Amsterdam [u.a.] : Elsevier Science, 1985 212 Online-Ressource (DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 1872-7107 nnns volume:212 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.03 Methoden und Techniken der Land- und Forstwirtschaft VZ AR 212 |
language |
English |
source |
Enthalten in Computers and electronics in agriculture 212 volume:212 |
sourceStr |
Enthalten in Computers and electronics in agriculture 212 volume:212 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Land- und Forstwirtschaft |
institution |
findex.gbv.de |
topic_facet |
Tea plantation mapping Multitemporal spectral features Remote sensing |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Computers and electronics in agriculture |
authorswithroles_txt_mv |
Qi, Ning @@aut@@ Yang, Hao @@aut@@ Shao, Guowen @@aut@@ Chen, Riqiang @@aut@@ Wu, Baoguo @@aut@@ Xu, Bo @@aut@@ Feng, Haikuan @@aut@@ Yang, Guijun @@aut@@ Zhao, Chunjiang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320567826 |
dewey-sort |
3620 |
id |
ELV062688944 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062688944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928074156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2023.108108</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062688944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(23)00496-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qi, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tea plantation mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multitemporal spectral features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Guowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Riqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Baoguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Haikuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guijun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6425-8321</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Chunjiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">212</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:212</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">212</subfield></datafield></record></collection>
|
author |
Qi, Ning |
spellingShingle |
Qi, Ning ddc 620 bkl 48.03 misc Tea plantation mapping misc Multitemporal spectral features misc Remote sensing Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
authorStr |
Qi, Ning |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320567826 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 630 - Agriculture & related technologies 640 - Home & family management 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-7107 |
topic_title |
620 630 640 004 VZ 48.03 bkl Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China Tea plantation mapping Multitemporal spectral features Remote sensing |
topic |
ddc 620 bkl 48.03 misc Tea plantation mapping misc Multitemporal spectral features misc Remote sensing |
topic_unstemmed |
ddc 620 bkl 48.03 misc Tea plantation mapping misc Multitemporal spectral features misc Remote sensing |
topic_browse |
ddc 620 bkl 48.03 misc Tea plantation mapping misc Multitemporal spectral features misc Remote sensing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers and electronics in agriculture |
hierarchy_parent_id |
320567826 |
dewey-tens |
620 - Engineering 630 - Agriculture 640 - Home & family management 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers and electronics in agriculture |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320567826 (DE-600)2016151-7 (DE-576)090955684 |
title |
Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
ctrlnum |
(DE-627)ELV062688944 (ELSEVIER)S0168-1699(23)00496-9 |
title_full |
Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
author_sort |
Qi, Ning |
journal |
Computers and electronics in agriculture |
journalStr |
Computers and electronics in agriculture |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Qi, Ning Yang, Hao Shao, Guowen Chen, Riqiang Wu, Baoguo Xu, Bo Feng, Haikuan Yang, Guijun Zhao, Chunjiang |
container_volume |
212 |
class |
620 630 640 004 VZ 48.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Qi, Ning |
doi_str_mv |
10.1016/j.compag.2023.108108 |
normlink |
(ORCID)0000-0002-6425-8321 |
normlink_prefix_str_mv |
(orcid)0000-0002-6425-8321 |
dewey-full |
620 630 640 004 |
author2-role |
verfasserin |
title_sort |
mapping tea plantations using multitemporal spectral features by harmonised sentinel-2 and landsat images in yingde, china |
title_auth |
Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
abstract |
Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. |
abstractGer |
Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. |
abstract_unstemmed |
Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China |
remote_bool |
true |
author2 |
Yang, Hao Shao, Guowen Chen, Riqiang Wu, Baoguo Xu, Bo Feng, Haikuan Yang, Guijun Zhao, Chunjiang |
author2Str |
Yang, Hao Shao, Guowen Chen, Riqiang Wu, Baoguo Xu, Bo Feng, Haikuan Yang, Guijun Zhao, Chunjiang |
ppnlink |
320567826 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compag.2023.108108 |
up_date |
2024-07-06T19:04:56.428Z |
_version_ |
1803857634451783680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062688944</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928074156.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230905s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compag.2023.108108</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062688944</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-1699(23)00496-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qi, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tea is a highly demanded and valuable commodity in both domestic and international markets, with China being the world's largest producer and exporter, resulting in the expansion of tea tree cultivation in China over the past few decades. Accurate mapping of tea plantations is vital for tea markets, food security, poverty alleviation, and ecosystem value assessment. However, research on vegetation plantation monitoring has focused primarily on food crops, and the spatial information for the perennial tea tree is often neglected. Moreover, monitoring tea plantations poses significant challenges in terms of the diverse cultivation management measures, the heterogeneity of tea garden landscapes, and the limited availability of clear imagery due to cloud cover. In this study, we constructed a novel tea plantation mapping algorithm based on multitemporal spectral features. In addition, a Tea Plantation Phenological Feature Index (TPI) is proposed to enable easy and reliable monitoring of tea plantations. The algorithm harmonized the Landsat7/8 and Sentinel-2 satellite images on the Google Earth Engine (GEE) platform, utilizing a semi-automatic decision tree model to identify tea gardens in Yingde City, Guangdong Province. Our results show that the tea plantation phenological feature index (TPI), green band in October (GreenOct) and cumulative band in April (CBApr) are the most effective multitemporal spectral features for identifying tea gardens. The F1-score, OA, and kappa coefficients (Kappa) of the 2020 tea plantation map generated by the tea plantation mapping algorithm based on multitemporal spectral features are 90.75%, 92.71%, and 0.844, respectively. Furthermore, the algorithm is time-reusable, as evidenced by the F1-score, OA, and kappa coefficients of the generated 2021 tea plantation map, which are 85.99%, 88.86%, and 0.7675, respectively. Our results underscore the exceptional ability of the multitemporal spectral features to separate tea gardens from evergreen forests. The tea plantation mapping algorithm based on multitemporal spectral features is a robust, user-friendly, and effective tool suitable for regional or national annual tea plantation mapping, enabling sustainable production and implementing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tea plantation mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multitemporal spectral features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Guowen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Riqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Baoguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Haikuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guijun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6425-8321</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Chunjiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers and electronics in agriculture</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1985</subfield><subfield code="g">212</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320567826</subfield><subfield code="w">(DE-600)2016151-7</subfield><subfield code="w">(DE-576)090955684</subfield><subfield code="x">1872-7107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:212</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.03</subfield><subfield code="j">Methoden und Techniken der Land- und Forstwirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">212</subfield></datafield></record></collection>
|
score |
7.403063 |