Anomaly detection based on joint spatio-temporal learning for building electricity consumption
The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becom...
Ausführliche Beschreibung
Autor*in: |
Kong, Jun [verfasserIn] Jiang, Wen [verfasserIn] Tian, Qing [verfasserIn] Jiang, Min [verfasserIn] Liu, Tianshan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning |
---|
Übergeordnetes Werk: |
Enthalten in: Applied energy - Amsterdam [u.a.] : Elsevier Science, 1975, 334 |
---|---|
Übergeordnetes Werk: |
volume:334 |
DOI / URN: |
10.1016/j.apenergy.2022.120635 |
---|
Katalog-ID: |
ELV062746758 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV062746758 | ||
003 | DE-627 | ||
005 | 20240113093127.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230906s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apenergy.2022.120635 |2 doi | |
035 | |a (DE-627)ELV062746758 | ||
035 | |a (ELSEVIER)S0306-2619(22)01892-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 52.50 |2 bkl | ||
100 | 1 | |a Kong, Jun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. | ||
650 | 4 | |a Buildings electricity consumption | |
650 | 4 | |a Anomaly Detection based on Joint Spatio-Temporal learning | |
650 | 4 | |a Multi-Scale Graph Convolutional Network | |
650 | 4 | |a Multi-Scale Temporal Convolutional Network | |
700 | 1 | |a Jiang, Wen |e verfasserin |4 aut | |
700 | 1 | |a Tian, Qing |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Min |e verfasserin |4 aut | |
700 | 1 | |a Liu, Tianshan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 334 |h Online-Ressource |w (DE-627)320406709 |w (DE-600)2000772-3 |w (DE-576)256140251 |x 1872-9118 |7 nnns |
773 | 1 | 8 | |g volume:334 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.50 |j Energietechnik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 334 |
author_variant |
j k jk w j wj q t qt m j mj t l tl |
---|---|
matchkey_str |
article:18729118:2023----::nmldtcinaeojitptoeprlerigobidn |
hierarchy_sort_str |
2023 |
bklnumber |
52.50 |
publishDate |
2023 |
allfields |
10.1016/j.apenergy.2022.120635 doi (DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Kong, Jun verfasserin aut Anomaly detection based on joint spatio-temporal learning for building electricity consumption 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network Jiang, Wen verfasserin aut Tian, Qing verfasserin aut Jiang, Min verfasserin aut Liu, Tianshan verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 334 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:334 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 334 |
spelling |
10.1016/j.apenergy.2022.120635 doi (DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Kong, Jun verfasserin aut Anomaly detection based on joint spatio-temporal learning for building electricity consumption 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network Jiang, Wen verfasserin aut Tian, Qing verfasserin aut Jiang, Min verfasserin aut Liu, Tianshan verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 334 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:334 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 334 |
allfields_unstemmed |
10.1016/j.apenergy.2022.120635 doi (DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Kong, Jun verfasserin aut Anomaly detection based on joint spatio-temporal learning for building electricity consumption 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network Jiang, Wen verfasserin aut Tian, Qing verfasserin aut Jiang, Min verfasserin aut Liu, Tianshan verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 334 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:334 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 334 |
allfieldsGer |
10.1016/j.apenergy.2022.120635 doi (DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Kong, Jun verfasserin aut Anomaly detection based on joint spatio-temporal learning for building electricity consumption 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network Jiang, Wen verfasserin aut Tian, Qing verfasserin aut Jiang, Min verfasserin aut Liu, Tianshan verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 334 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:334 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 334 |
allfieldsSound |
10.1016/j.apenergy.2022.120635 doi (DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X DE-627 ger DE-627 rda eng 620 VZ 52.50 bkl Kong, Jun verfasserin aut Anomaly detection based on joint spatio-temporal learning for building electricity consumption 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network Jiang, Wen verfasserin aut Tian, Qing verfasserin aut Jiang, Min verfasserin aut Liu, Tianshan verfasserin aut Enthalten in Applied energy Amsterdam [u.a.] : Elsevier Science, 1975 334 Online-Ressource (DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 1872-9118 nnns volume:334 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.50 Energietechnik: Allgemeines VZ AR 334 |
language |
English |
source |
Enthalten in Applied energy 334 volume:334 |
sourceStr |
Enthalten in Applied energy 334 volume:334 |
format_phy_str_mv |
Article |
bklname |
Energietechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Applied energy |
authorswithroles_txt_mv |
Kong, Jun @@aut@@ Jiang, Wen @@aut@@ Tian, Qing @@aut@@ Jiang, Min @@aut@@ Liu, Tianshan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320406709 |
dewey-sort |
3620 |
id |
ELV062746758 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062746758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240113093127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2022.120635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062746758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(22)01892-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kong, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anomaly detection based on joint spatio-temporal learning for building electricity consumption</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buildings electricity consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly Detection based on Joint Spatio-Temporal learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-Scale Graph Convolutional Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-Scale Temporal Convolutional Network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tianshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">334</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield></datafield></record></collection>
|
author |
Kong, Jun |
spellingShingle |
Kong, Jun ddc 620 bkl 52.50 misc Buildings electricity consumption misc Anomaly Detection based on Joint Spatio-Temporal learning misc Multi-Scale Graph Convolutional Network misc Multi-Scale Temporal Convolutional Network Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
authorStr |
Kong, Jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406709 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-9118 |
topic_title |
620 VZ 52.50 bkl Anomaly detection based on joint spatio-temporal learning for building electricity consumption Buildings electricity consumption Anomaly Detection based on Joint Spatio-Temporal learning Multi-Scale Graph Convolutional Network Multi-Scale Temporal Convolutional Network |
topic |
ddc 620 bkl 52.50 misc Buildings electricity consumption misc Anomaly Detection based on Joint Spatio-Temporal learning misc Multi-Scale Graph Convolutional Network misc Multi-Scale Temporal Convolutional Network |
topic_unstemmed |
ddc 620 bkl 52.50 misc Buildings electricity consumption misc Anomaly Detection based on Joint Spatio-Temporal learning misc Multi-Scale Graph Convolutional Network misc Multi-Scale Temporal Convolutional Network |
topic_browse |
ddc 620 bkl 52.50 misc Buildings electricity consumption misc Anomaly Detection based on Joint Spatio-Temporal learning misc Multi-Scale Graph Convolutional Network misc Multi-Scale Temporal Convolutional Network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied energy |
hierarchy_parent_id |
320406709 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Applied energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406709 (DE-600)2000772-3 (DE-576)256140251 |
title |
Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
ctrlnum |
(DE-627)ELV062746758 (ELSEVIER)S0306-2619(22)01892-X |
title_full |
Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
author_sort |
Kong, Jun |
journal |
Applied energy |
journalStr |
Applied energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Kong, Jun Jiang, Wen Tian, Qing Jiang, Min Liu, Tianshan |
container_volume |
334 |
class |
620 VZ 52.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kong, Jun |
doi_str_mv |
10.1016/j.apenergy.2022.120635 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
anomaly detection based on joint spatio-temporal learning for building electricity consumption |
title_auth |
Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
abstract |
The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. |
abstractGer |
The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. |
abstract_unstemmed |
The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Anomaly detection based on joint spatio-temporal learning for building electricity consumption |
remote_bool |
true |
author2 |
Jiang, Wen Tian, Qing Jiang, Min Liu, Tianshan |
author2Str |
Jiang, Wen Tian, Qing Jiang, Min Liu, Tianshan |
ppnlink |
320406709 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apenergy.2022.120635 |
up_date |
2024-07-06T19:08:08.509Z |
_version_ |
1803857835862261760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV062746758</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240113093127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apenergy.2022.120635</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV062746758</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-2619(22)01892-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kong, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anomaly detection based on joint spatio-temporal learning for building electricity consumption</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becoming overwhelming problems. At present, most anomaly detection algorithms mainly focus on the time series information of electricity consumption data, while ignoring the spatial feature of electricity consumption data. To fill this research gap, the paper proposes an Anomaly Detection based on Joint Spatio-Temporal learning (ADJST) method for building electricity consumption. First, a Multi-Scale Graph Convolutional Network (MS-GCN) is proposed to learn the spatial features of building electricity consumption data. Specifically, two types of graphs are constructed to extract short-term correlation features and long-term regularity features of building electricity consumption data. Second, a Multi-Scale Temporal Convolutional Network (MS-TCN) is proposed to learn the temporal features of building electricity consumption data. Adopt a multi-scale vanilla convolution structure to extract multi-scale time series information from building electricity consumption data. Third, the combination of temporal features and spatial features detects anomalous electricity consumption of marked users. Final, taken the user electricity consumption data collected by the State Grid Corporation's smart meter as examples, compared with a variety of classical anomaly detection algorithms, the results of F1-score and AUC of the proposed method are 0.935 and 0.977 respectively, which proves the superiority of the method. The model shows good stability in dealing with extreme imbalance of data, and is proved to be generalized by experiments and can be transferred to other datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buildings electricity consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly Detection based on Joint Spatio-Temporal learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-Scale Graph Convolutional Network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-Scale Temporal Convolutional Network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tianshan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">334</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406709</subfield><subfield code="w">(DE-600)2000772-3</subfield><subfield code="w">(DE-576)256140251</subfield><subfield code="x">1872-9118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.50</subfield><subfield code="j">Energietechnik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield></datafield></record></collection>
|
score |
7.401886 |