Anomaly detection based on joint spatio-temporal learning for building electricity consumption

The use of electric energy is an integral part of people's daily life. Anomaly detection of electricity consumption data, as a classification problem, has always been a hot research topic of scholars. Anomaly detection can not only reduce energy waste, but also prevent small problems from becom...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Kong, Jun [verfasserIn]

Jiang, Wen [verfasserIn]

Tian, Qing [verfasserIn]

Jiang, Min [verfasserIn]

Liu, Tianshan [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Buildings electricity consumption

Anomaly Detection based on Joint Spatio-Temporal learning

Multi-Scale Graph Convolutional Network

Multi-Scale Temporal Convolutional Network

Übergeordnetes Werk:

Enthalten in: Applied energy - Amsterdam [u.a.] : Elsevier Science, 1975, 334

Übergeordnetes Werk:

volume:334

DOI / URN:

10.1016/j.apenergy.2022.120635

Katalog-ID:

ELV062746758

Nicht das Richtige dabei?

Schreiben Sie uns!