Evaluation and improvement of residence time distribution analysis methods
Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real...
Ausführliche Beschreibung
Autor*in: |
Zhang, Bochao [verfasserIn] Cui, Yuanlai [verfasserIn] Luo, Junzhe [verfasserIn] Wang, Jiaer [verfasserIn] Liao, Bin [verfasserIn] Tang, Chi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 620 |
---|---|
Übergeordnetes Werk: |
volume:620 |
DOI / URN: |
10.1016/j.jhydrol.2023.129531 |
---|
Katalog-ID: |
ELV063126486 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV063126486 | ||
003 | DE-627 | ||
005 | 20230928125046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230908s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2023.129531 |2 doi | |
035 | |a (DE-627)ELV063126486 | ||
035 | |a (ELSEVIER)S0022-1694(23)00473-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Zhang, Bochao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation and improvement of residence time distribution analysis methods |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. | ||
650 | 4 | |a Wetland | |
650 | 4 | |a Tracer test | |
650 | 4 | |a Residence time distribution (RTD) analysis | |
650 | 4 | |a Moment index | |
650 | 4 | |a RTD modeling | |
650 | 4 | |a Rational function | |
700 | 1 | |a Cui, Yuanlai |e verfasserin |4 aut | |
700 | 1 | |a Luo, Junzhe |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jiaer |e verfasserin |4 aut | |
700 | 1 | |a Liao, Bin |e verfasserin |4 aut | |
700 | 1 | |a Tang, Chi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 620 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:620 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 620 |
author_variant |
b z bz y c yc j l jl j w jw b l bl c t ct |
---|---|
matchkey_str |
article:18792707:2023----::vlainnipoeetfeiectmdsrbt |
hierarchy_sort_str |
2023 |
bklnumber |
38.85 |
publishDate |
2023 |
allfields |
10.1016/j.jhydrol.2023.129531 doi (DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Zhang, Bochao verfasserin aut Evaluation and improvement of residence time distribution analysis methods 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function Cui, Yuanlai verfasserin aut Luo, Junzhe verfasserin aut Wang, Jiaer verfasserin aut Liao, Bin verfasserin aut Tang, Chi verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 620 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:620 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 620 |
spelling |
10.1016/j.jhydrol.2023.129531 doi (DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Zhang, Bochao verfasserin aut Evaluation and improvement of residence time distribution analysis methods 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function Cui, Yuanlai verfasserin aut Luo, Junzhe verfasserin aut Wang, Jiaer verfasserin aut Liao, Bin verfasserin aut Tang, Chi verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 620 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:620 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 620 |
allfields_unstemmed |
10.1016/j.jhydrol.2023.129531 doi (DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Zhang, Bochao verfasserin aut Evaluation and improvement of residence time distribution analysis methods 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function Cui, Yuanlai verfasserin aut Luo, Junzhe verfasserin aut Wang, Jiaer verfasserin aut Liao, Bin verfasserin aut Tang, Chi verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 620 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:620 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 620 |
allfieldsGer |
10.1016/j.jhydrol.2023.129531 doi (DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Zhang, Bochao verfasserin aut Evaluation and improvement of residence time distribution analysis methods 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function Cui, Yuanlai verfasserin aut Luo, Junzhe verfasserin aut Wang, Jiaer verfasserin aut Liao, Bin verfasserin aut Tang, Chi verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 620 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:620 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 620 |
allfieldsSound |
10.1016/j.jhydrol.2023.129531 doi (DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Zhang, Bochao verfasserin aut Evaluation and improvement of residence time distribution analysis methods 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function Cui, Yuanlai verfasserin aut Luo, Junzhe verfasserin aut Wang, Jiaer verfasserin aut Liao, Bin verfasserin aut Tang, Chi verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 620 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:620 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 620 |
language |
English |
source |
Enthalten in Journal of hydrology 620 volume:620 |
sourceStr |
Enthalten in Journal of hydrology 620 volume:620 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Zhang, Bochao @@aut@@ Cui, Yuanlai @@aut@@ Luo, Junzhe @@aut@@ Wang, Jiaer @@aut@@ Liao, Bin @@aut@@ Tang, Chi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV063126486 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV063126486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928125046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230908s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.129531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV063126486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)00473-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Bochao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation and improvement of residence time distribution analysis methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetland</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residence time distribution (RTD) analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moment index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RTD modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yuanlai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Junzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">620</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:620</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">620</subfield></datafield></record></collection>
|
author |
Zhang, Bochao |
spellingShingle |
Zhang, Bochao ddc 690 bkl 38.85 misc Wetland misc Tracer test misc Residence time distribution (RTD) analysis misc Moment index misc RTD modeling misc Rational function Evaluation and improvement of residence time distribution analysis methods |
authorStr |
Zhang, Bochao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 VZ 38.85 bkl Evaluation and improvement of residence time distribution analysis methods Wetland Tracer test Residence time distribution (RTD) analysis Moment index RTD modeling Rational function |
topic |
ddc 690 bkl 38.85 misc Wetland misc Tracer test misc Residence time distribution (RTD) analysis misc Moment index misc RTD modeling misc Rational function |
topic_unstemmed |
ddc 690 bkl 38.85 misc Wetland misc Tracer test misc Residence time distribution (RTD) analysis misc Moment index misc RTD modeling misc Rational function |
topic_browse |
ddc 690 bkl 38.85 misc Wetland misc Tracer test misc Residence time distribution (RTD) analysis misc Moment index misc RTD modeling misc Rational function |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
Evaluation and improvement of residence time distribution analysis methods |
ctrlnum |
(DE-627)ELV063126486 (ELSEVIER)S0022-1694(23)00473-0 |
title_full |
Evaluation and improvement of residence time distribution analysis methods |
author_sort |
Zhang, Bochao |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Bochao Cui, Yuanlai Luo, Junzhe Wang, Jiaer Liao, Bin Tang, Chi |
container_volume |
620 |
class |
690 VZ 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Bochao |
doi_str_mv |
10.1016/j.jhydrol.2023.129531 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
evaluation and improvement of residence time distribution analysis methods |
title_auth |
Evaluation and improvement of residence time distribution analysis methods |
abstract |
Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. |
abstractGer |
Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. |
abstract_unstemmed |
Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Evaluation and improvement of residence time distribution analysis methods |
remote_bool |
true |
author2 |
Cui, Yuanlai Luo, Junzhe Wang, Jiaer Liao, Bin Tang, Chi |
author2Str |
Cui, Yuanlai Luo, Junzhe Wang, Jiaer Liao, Bin Tang, Chi |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2023.129531 |
up_date |
2024-07-06T19:26:17.505Z |
_version_ |
1803858977757331456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV063126486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928125046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230908s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.129531</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV063126486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)00473-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Bochao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation and improvement of residence time distribution analysis methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although residence time distributions (RTDs) are frequently used in wetland studies, there is no consensus about the analysis method. Generally, two types of methods can be used to analyze RTD data: the method of moments and the RTD modeling method. RTD curves are obtained by tracer tests. The real RTD curves are usually imperfect due to the presence of random measurement errors, the unreasonable sampling intervals, and the premature termination of the tracer test. This study aims to find a better RTD analysis method providing robust results under these unfavorable factors, which includes: (i) evaluating the existing RTD analysis methods; (ii) improving the existing RTD analysis method using the Rational model. The influence of measurement error, sampling interval, and ending time in tracer tests on RTD analysis methods was first simulated. The results showed that effective volume ratio was a preferable indicator compared with the variance of RTD. The stability of the moment method decreased with the increase of the measurement error and sampling interval, and the accuracy of the moment method decreased with the decrease of the test time. Although the RTD modeling method showed better stability and accuracy, the implicit premise is that the RTD model adequately describes the observed data. Further, 36 observed RTD data sets were used to test the Tanks in Series (TIS) model and the empirical Rational model. The results showed that the widely used TIS model was only effective in partial cases, while the newly proposed Rational model showed broader applicability. Both the moment method and the TIS modeling method were proven to be inadequate. Finally, the moment method was improved by using Rational models to pre-process RTD data. Although the improved method is still affected by random measurement errors, it can significantly increase the accuracy of the moment method when sampling points are small or the test ends prematurely.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetland</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tracer test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residence time distribution (RTD) analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moment index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RTD modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Yuanlai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Junzhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiaer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">620</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:620</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">620</subfield></datafield></record></collection>
|
score |
7.4013834 |