Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra

Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of labor...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Bao, Yilin [verfasserIn]

Yao, Fengmei [verfasserIn]

Meng, Xiangtian [verfasserIn]

Zhang, Jiahua [verfasserIn]

Liu, Huanjun [verfasserIn]

Mounem Mouazen, Abdul [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Clustering probability model

Sentinel-2A

laboratory Vis-NIR spectral

Integrate

Multi-scales

Random forest

Digital SOC mapping

Übergeordnetes Werk:

Enthalten in: ISPRS journal of photogrammetry and remote sensing - International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7, Amsterdam [u.a.] : Elsevier, 1989, 203, Seite 1-18

Übergeordnetes Werk:

volume:203 ; pages:1-18

DOI / URN:

10.1016/j.isprsjprs.2023.07.020

Katalog-ID:

ELV063540428

Nicht das Richtige dabei?

Schreiben Sie uns!