Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra
Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of labor...
Ausführliche Beschreibung
Autor*in: |
Bao, Yilin [verfasserIn] Yao, Fengmei [verfasserIn] Meng, Xiangtian [verfasserIn] Zhang, Jiahua [verfasserIn] Liu, Huanjun [verfasserIn] Mounem Mouazen, Abdul [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: ISPRS journal of photogrammetry and remote sensing - International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7, Amsterdam [u.a.] : Elsevier, 1989, 203, Seite 1-18 |
---|---|
Übergeordnetes Werk: |
volume:203 ; pages:1-18 |
DOI / URN: |
10.1016/j.isprsjprs.2023.07.020 |
---|
Katalog-ID: |
ELV063540428 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV063540428 | ||
003 | DE-627 | ||
005 | 20230927082426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230909s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isprsjprs.2023.07.020 |2 doi | |
035 | |a (DE-627)ELV063540428 | ||
035 | |a (ELSEVIER)S0924-2716(23)00202-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.73 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Bao, Yilin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. | ||
650 | 4 | |a Clustering probability model | |
650 | 4 | |a Sentinel-2A | |
650 | 4 | |a laboratory Vis-NIR spectral | |
650 | 4 | |a Integrate | |
650 | 4 | |a Multi-scales | |
650 | 4 | |a Random forest | |
650 | 4 | |a Digital SOC mapping | |
700 | 1 | |a Yao, Fengmei |e verfasserin |4 aut | |
700 | 1 | |a Meng, Xiangtian |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jiahua |e verfasserin |4 aut | |
700 | 1 | |a Liu, Huanjun |e verfasserin |4 aut | |
700 | 1 | |a Mounem Mouazen, Abdul |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 |t ISPRS journal of photogrammetry and remote sensing |d Amsterdam [u.a.] : Elsevier, 1989 |g 203, Seite 1-18 |h Online-Ressource |w (DE-627)320504557 |w (DE-600)2012663-3 |w (DE-576)096806567 |x 0924-2716 |7 nnns |
773 | 1 | 8 | |g volume:203 |g pages:1-18 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.73 |j Geodäsie |q VZ |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |q VZ |
951 | |a AR | ||
952 | |d 203 |h 1-18 |
author_variant |
y b yb f y fy x m xm j z jz h l hl m a m ma mam |
---|---|
matchkey_str |
article:09242716:2023----::rdcigolraicroicliaelnarsgorpiaadptasaeitgaiget |
hierarchy_sort_str |
2023 |
bklnumber |
38.73 74.41 |
publishDate |
2023 |
allfields |
10.1016/j.isprsjprs.2023.07.020 doi (DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Bao, Yilin verfasserin aut Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping Yao, Fengmei verfasserin aut Meng, Xiangtian verfasserin aut Zhang, Jiahua verfasserin aut Liu, Huanjun verfasserin aut Mounem Mouazen, Abdul verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 203, Seite 1-18 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:203 pages:1-18 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 203 1-18 |
spelling |
10.1016/j.isprsjprs.2023.07.020 doi (DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Bao, Yilin verfasserin aut Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping Yao, Fengmei verfasserin aut Meng, Xiangtian verfasserin aut Zhang, Jiahua verfasserin aut Liu, Huanjun verfasserin aut Mounem Mouazen, Abdul verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 203, Seite 1-18 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:203 pages:1-18 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 203 1-18 |
allfields_unstemmed |
10.1016/j.isprsjprs.2023.07.020 doi (DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Bao, Yilin verfasserin aut Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping Yao, Fengmei verfasserin aut Meng, Xiangtian verfasserin aut Zhang, Jiahua verfasserin aut Liu, Huanjun verfasserin aut Mounem Mouazen, Abdul verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 203, Seite 1-18 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:203 pages:1-18 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 203 1-18 |
allfieldsGer |
10.1016/j.isprsjprs.2023.07.020 doi (DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Bao, Yilin verfasserin aut Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping Yao, Fengmei verfasserin aut Meng, Xiangtian verfasserin aut Zhang, Jiahua verfasserin aut Liu, Huanjun verfasserin aut Mounem Mouazen, Abdul verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 203, Seite 1-18 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:203 pages:1-18 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 203 1-18 |
allfieldsSound |
10.1016/j.isprsjprs.2023.07.020 doi (DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Bao, Yilin verfasserin aut Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping Yao, Fengmei verfasserin aut Meng, Xiangtian verfasserin aut Zhang, Jiahua verfasserin aut Liu, Huanjun verfasserin aut Mounem Mouazen, Abdul verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 203, Seite 1-18 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:203 pages:1-18 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 203 1-18 |
language |
English |
source |
Enthalten in ISPRS journal of photogrammetry and remote sensing 203, Seite 1-18 volume:203 pages:1-18 |
sourceStr |
Enthalten in ISPRS journal of photogrammetry and remote sensing 203, Seite 1-18 volume:203 pages:1-18 |
format_phy_str_mv |
Article |
bklname |
Geodäsie Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
ISPRS journal of photogrammetry and remote sensing |
authorswithroles_txt_mv |
Bao, Yilin @@aut@@ Yao, Fengmei @@aut@@ Meng, Xiangtian @@aut@@ Zhang, Jiahua @@aut@@ Liu, Huanjun @@aut@@ Mounem Mouazen, Abdul @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320504557 |
dewey-sort |
3550 |
id |
ELV063540428 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV063540428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927082426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230909s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2023.07.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV063540428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(23)00202-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Yilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering probability model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentinel-2A</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laboratory Vis-NIR spectral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital SOC mapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Fengmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangtian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiahua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Huanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mounem Mouazen, Abdul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">203, Seite 1-18</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield><subfield code="g">pages:1-18</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield><subfield code="h">1-18</subfield></datafield></record></collection>
|
author |
Bao, Yilin |
spellingShingle |
Bao, Yilin ddc 550 bkl 38.73 bkl 74.41 misc Clustering probability model misc Sentinel-2A misc laboratory Vis-NIR spectral misc Integrate misc Multi-scales misc Random forest misc Digital SOC mapping Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
authorStr |
Bao, Yilin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504557 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0924-2716 |
topic_title |
550 VZ 38.73 bkl 74.41 bkl Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra Clustering probability model Sentinel-2A laboratory Vis-NIR spectral Integrate Multi-scales Random forest Digital SOC mapping |
topic |
ddc 550 bkl 38.73 bkl 74.41 misc Clustering probability model misc Sentinel-2A misc laboratory Vis-NIR spectral misc Integrate misc Multi-scales misc Random forest misc Digital SOC mapping |
topic_unstemmed |
ddc 550 bkl 38.73 bkl 74.41 misc Clustering probability model misc Sentinel-2A misc laboratory Vis-NIR spectral misc Integrate misc Multi-scales misc Random forest misc Digital SOC mapping |
topic_browse |
ddc 550 bkl 38.73 bkl 74.41 misc Clustering probability model misc Sentinel-2A misc laboratory Vis-NIR spectral misc Integrate misc Multi-scales misc Random forest misc Digital SOC mapping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS journal of photogrammetry and remote sensing |
hierarchy_parent_id |
320504557 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
ISPRS journal of photogrammetry and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 |
title |
Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
ctrlnum |
(DE-627)ELV063540428 (ELSEVIER)S0924-2716(23)00202-2 |
title_full |
Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
author_sort |
Bao, Yilin |
journal |
ISPRS journal of photogrammetry and remote sensing |
journalStr |
ISPRS journal of photogrammetry and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Bao, Yilin Yao, Fengmei Meng, Xiangtian Zhang, Jiahua Liu, Huanjun Mounem Mouazen, Abdul |
container_volume |
203 |
class |
550 VZ 38.73 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Bao, Yilin |
doi_str_mv |
10.1016/j.isprsjprs.2023.07.020 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
predicting soil organic carbon in cultivated land across geographical and spatial scales: integrating sentinel-2a and laboratory vis-nir spectra |
title_auth |
Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
abstract |
Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. |
abstractGer |
Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. |
abstract_unstemmed |
Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra |
remote_bool |
true |
author2 |
Yao, Fengmei Meng, Xiangtian Zhang, Jiahua Liu, Huanjun Mounem Mouazen, Abdul |
author2Str |
Yao, Fengmei Meng, Xiangtian Zhang, Jiahua Liu, Huanjun Mounem Mouazen, Abdul |
ppnlink |
320504557 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isprsjprs.2023.07.020 |
up_date |
2024-07-06T19:46:23.261Z |
_version_ |
1803860242085183488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV063540428</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927082426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230909s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2023.07.020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV063540428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(23)00202-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Yilin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting soil organic carbon in cultivated land across geographical and spatial scales: Integrating Sentinel-2A and laboratory Vis-NIR spectra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Digital mapping of soil organic carbon (SOC) is essential for visualizing the spatial distribution at different regions and scales. However, existing studies using remote sensing are limited by the low spectral resolution of multispectral data for accurate estimation of SOC, and the failure of laboratory visible and near-infrared and shortwave infrared (Vis-NIR) spectroscopy to perform pixel-level mapping. To address these limitations, this study proposes a SOC mapping framework that integrates satellite earth observations and proximal sensing spectral data to reconstruct images having a spectral resolution of 400–2500 nm and a spatial resolution of 10 m, then the clustering probability analysis was applied on the reconstructed images, to develop a high accuracy SOC prediction model and demonstrate its effectiveness across geographical and spatial scales. Specifically, a total of 324 topsoil samples were collected from Baoqing and Suiling counties in northeast China, whose laboratory Vis-NIR reflectance spectra and SOC were measured. Sentinel-2A images of bare soils averaged over three years before and after the samples collection (i.e., 2018 to 2021) were collected. A total of 264 samples from eight fields in Belgium were used to evaluate the performance of the model at the field scale. Then, two models were developed (i) a global regression model with direct prediction using random forest and (ii) a clustering probability model with Gaussian Mixture Model-random forest. Results demonstrated that (1) reconstructed images produced more accurate prediction results than the individual laboratory Vis-NIR spectroscopy and Sentinel-2A models. (2) At the regional scale, clustering probability model achieved better performance in quantification of SOC (coefficient of determination [R2] = 0.78, and root mean square error [RMSE] = 0.78 %) than global regression model (R2 = 0.65, and RMSE = 1.06 %). (3) For field scale, the reconstructed image-based clustering probability SOC prediction model was shown to be effective when using the Belgium data, providing a R2 of 0.67, and RMSE of 0.15 %. (4) Integrating remote sensing multispectral and proximal Vis-NIR information can lead to a smoother and more continuous SOC distribution within the region, and can better show its spatial heterogeneity within the field. This study highlights the advantages of integrating remote sensing with proximal sensing for improving the accuracy of SOC prediction and mapping, enabling applicability of the model across geographical and spatial scales with appreciable accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering probability model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentinel-2A</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">laboratory Vis-NIR spectral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital SOC mapping</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Fengmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangtian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiahua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Huanjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mounem Mouazen, Abdul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">203, Seite 1-18</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield><subfield code="g">pages:1-18</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield><subfield code="h">1-18</subfield></datafield></record></collection>
|
score |
7.403063 |