One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study
Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydr...
Ausführliche Beschreibung
Autor*in: |
Hong, Zixiao [verfasserIn] Xu, Yuxin [verfasserIn] Ye, Daiqi [verfasserIn] Hu, Yun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Surface and coatings technology - Amsterdam [u.a.] : Elsevier Science, 1986, 472 |
---|---|
Übergeordnetes Werk: |
volume:472 |
DOI / URN: |
10.1016/j.surfcoat.2023.129943 |
---|
Katalog-ID: |
ELV06365363X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06365363X | ||
003 | DE-627 | ||
005 | 20231014093035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230910s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.surfcoat.2023.129943 |2 doi | |
035 | |a (DE-627)ELV06365363X | ||
035 | |a (ELSEVIER)S0257-8972(23)00718-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 670 |q VZ |
084 | |a 52.78 |2 bkl | ||
084 | |a 51.20 |2 bkl | ||
100 | 1 | |a Hong, Zixiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. | ||
650 | 4 | |a Superhydrophobic coating | |
650 | 4 | |a Binder | |
650 | 4 | |a Transparency | |
650 | 4 | |a Room temperature preparation | |
650 | 4 | |a Molecular dynamics simulation | |
700 | 1 | |a Xu, Yuxin |e verfasserin |4 aut | |
700 | 1 | |a Ye, Daiqi |e verfasserin |4 aut | |
700 | 1 | |a Hu, Yun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Surface and coatings technology |d Amsterdam [u.a.] : Elsevier Science, 1986 |g 472 |h Online-Ressource |w (DE-627)308447522 |w (DE-600)1502240-7 |w (DE-576)098474049 |x 0257-8972 |7 nnns |
773 | 1 | 8 | |g volume:472 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
936 | b | k | |a 51.20 |j Werkstoffoberflächeneigenschaften |q VZ |
951 | |a AR | ||
952 | |d 472 |
author_variant |
z h zh y x yx d y dy y h yh |
---|---|
matchkey_str |
article:02578972:2023----::nsefbiainfrbsadrnprnspryrpoislcenncaigsnayrpoibnearotmeauecmieep |
hierarchy_sort_str |
2023 |
bklnumber |
52.78 51.20 |
publishDate |
2023 |
allfields |
10.1016/j.surfcoat.2023.129943 doi (DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 DE-627 ger DE-627 rda eng 620 670 VZ 52.78 bkl 51.20 bkl Hong, Zixiao verfasserin aut One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation Xu, Yuxin verfasserin aut Ye, Daiqi verfasserin aut Hu, Yun verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 472 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:472 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.78 Oberflächentechnik Wärmebehandlung VZ 51.20 Werkstoffoberflächeneigenschaften VZ AR 472 |
spelling |
10.1016/j.surfcoat.2023.129943 doi (DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 DE-627 ger DE-627 rda eng 620 670 VZ 52.78 bkl 51.20 bkl Hong, Zixiao verfasserin aut One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation Xu, Yuxin verfasserin aut Ye, Daiqi verfasserin aut Hu, Yun verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 472 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:472 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.78 Oberflächentechnik Wärmebehandlung VZ 51.20 Werkstoffoberflächeneigenschaften VZ AR 472 |
allfields_unstemmed |
10.1016/j.surfcoat.2023.129943 doi (DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 DE-627 ger DE-627 rda eng 620 670 VZ 52.78 bkl 51.20 bkl Hong, Zixiao verfasserin aut One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation Xu, Yuxin verfasserin aut Ye, Daiqi verfasserin aut Hu, Yun verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 472 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:472 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.78 Oberflächentechnik Wärmebehandlung VZ 51.20 Werkstoffoberflächeneigenschaften VZ AR 472 |
allfieldsGer |
10.1016/j.surfcoat.2023.129943 doi (DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 DE-627 ger DE-627 rda eng 620 670 VZ 52.78 bkl 51.20 bkl Hong, Zixiao verfasserin aut One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation Xu, Yuxin verfasserin aut Ye, Daiqi verfasserin aut Hu, Yun verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 472 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:472 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.78 Oberflächentechnik Wärmebehandlung VZ 51.20 Werkstoffoberflächeneigenschaften VZ AR 472 |
allfieldsSound |
10.1016/j.surfcoat.2023.129943 doi (DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 DE-627 ger DE-627 rda eng 620 670 VZ 52.78 bkl 51.20 bkl Hong, Zixiao verfasserin aut One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation Xu, Yuxin verfasserin aut Ye, Daiqi verfasserin aut Hu, Yun verfasserin aut Enthalten in Surface and coatings technology Amsterdam [u.a.] : Elsevier Science, 1986 472 Online-Ressource (DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 0257-8972 nnns volume:472 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.78 Oberflächentechnik Wärmebehandlung VZ 51.20 Werkstoffoberflächeneigenschaften VZ AR 472 |
language |
English |
source |
Enthalten in Surface and coatings technology 472 volume:472 |
sourceStr |
Enthalten in Surface and coatings technology 472 volume:472 |
format_phy_str_mv |
Article |
bklname |
Oberflächentechnik Wärmebehandlung Werkstoffoberflächeneigenschaften |
institution |
findex.gbv.de |
topic_facet |
Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Surface and coatings technology |
authorswithroles_txt_mv |
Hong, Zixiao @@aut@@ Xu, Yuxin @@aut@@ Ye, Daiqi @@aut@@ Hu, Yun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
308447522 |
dewey-sort |
3620 |
id |
ELV06365363X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06365363X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231014093035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230910s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2023.129943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06365363X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(23)00718-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Zixiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superhydrophobic coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Room temperature preparation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Daiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surface and coatings technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">472</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447522</subfield><subfield code="w">(DE-600)1502240-7</subfield><subfield code="w">(DE-576)098474049</subfield><subfield code="x">0257-8972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.20</subfield><subfield code="j">Werkstoffoberflächeneigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">472</subfield></datafield></record></collection>
|
author |
Hong, Zixiao |
spellingShingle |
Hong, Zixiao ddc 620 bkl 52.78 bkl 51.20 misc Superhydrophobic coating misc Binder misc Transparency misc Room temperature preparation misc Molecular dynamics simulation One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
authorStr |
Hong, Zixiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447522 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0257-8972 |
topic_title |
620 670 VZ 52.78 bkl 51.20 bkl One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study Superhydrophobic coating Binder Transparency Room temperature preparation Molecular dynamics simulation |
topic |
ddc 620 bkl 52.78 bkl 51.20 misc Superhydrophobic coating misc Binder misc Transparency misc Room temperature preparation misc Molecular dynamics simulation |
topic_unstemmed |
ddc 620 bkl 52.78 bkl 51.20 misc Superhydrophobic coating misc Binder misc Transparency misc Room temperature preparation misc Molecular dynamics simulation |
topic_browse |
ddc 620 bkl 52.78 bkl 51.20 misc Superhydrophobic coating misc Binder misc Transparency misc Room temperature preparation misc Molecular dynamics simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Surface and coatings technology |
hierarchy_parent_id |
308447522 |
dewey-tens |
620 - Engineering 670 - Manufacturing |
hierarchy_top_title |
Surface and coatings technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447522 (DE-600)1502240-7 (DE-576)098474049 |
title |
One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
ctrlnum |
(DE-627)ELV06365363X (ELSEVIER)S0257-8972(23)00718-1 |
title_full |
One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
author_sort |
Hong, Zixiao |
journal |
Surface and coatings technology |
journalStr |
Surface and coatings technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hong, Zixiao Xu, Yuxin Ye, Daiqi Hu, Yun |
container_volume |
472 |
class |
620 670 VZ 52.78 bkl 51.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hong, Zixiao |
doi_str_mv |
10.1016/j.surfcoat.2023.129943 |
dewey-full |
620 670 |
author2-role |
verfasserin |
title_sort |
one-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: a combined experimental and molecular dynamics simulation study |
title_auth |
One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
abstract |
Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. |
abstractGer |
Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. |
abstract_unstemmed |
Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study |
remote_bool |
true |
author2 |
Xu, Yuxin Ye, Daiqi Hu, Yun |
author2Str |
Xu, Yuxin Ye, Daiqi Hu, Yun |
ppnlink |
308447522 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.surfcoat.2023.129943 |
up_date |
2024-07-06T19:51:16.153Z |
_version_ |
1803860549203656704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06365363X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231014093035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230910s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2023.129943</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06365363X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(23)00718-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hong, Zixiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-step fabrication of a robust and transparent superhydrophobic self-cleaning coating using a hydrophobic binder at room temperature: A combined experimental and molecular dynamics simulation study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Superhydrophobic coatings, as a type of functionalized coatings, are extensively studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with excellent transparency and robustness through a simple fabrication process remains a challenge. In this work, we synthesize a hydrophobic binder using hydroxyl-terminated polydimethylsiloxane (HTPDMS) as the main raw material. We also hydrophobically modify SiO2 nanoparticles as low surface energy substances. The superhydrophobic coating is then obtained by a simple spraying method and cured at room temperature. The combination of the binder and nanoparticles in the right amount forms a rough structure that is able to combine transparency and superhydrophobicity, resulting in a coating with a light transmission of about 88 % and a contact angle of 162°. The presence of PDMS component in the binder enhances the chemical durability and mechanical robustness of the superhydrophobic coating. The coating is not only self-cleaning but also suitable for a wide range of substrates. Furthermore, the kinetic and energetic analysis of the solid-liquid interface using molecular dynamics simulation provides theoretical support for the superhydrophobicity of the coating at a microscopic level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superhydrophobic coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binder</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Room temperature preparation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Daiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surface and coatings technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1986</subfield><subfield code="g">472</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447522</subfield><subfield code="w">(DE-600)1502240-7</subfield><subfield code="w">(DE-576)098474049</subfield><subfield code="x">0257-8972</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.20</subfield><subfield code="j">Werkstoffoberflächeneigenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">472</subfield></datafield></record></collection>
|
score |
7.400729 |