Semantically consistent multi-view representation learning

In this work, we devote ourselves to the challenging task of Unsupervised Multi-view Representation Learning (UMRL), which requires learning a unified feature representation from multiple views in an unsupervised manner. Existing UMRL methods mainly focus on the learning process within the feature s...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Zhou, Yiyang [verfasserIn]

Zheng, Qinghai [verfasserIn]

Bai, Shunshun [verfasserIn]

Zhu, Jihua [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Multi-view representation learning

Contrastive learning

Semantic consensus information

Übergeordnetes Werk:

Enthalten in: Knowledge-based systems - Amsterdam [u.a.] : Elsevier Science, 1987, 278

Übergeordnetes Werk:

volume:278

DOI / URN:

10.1016/j.knosys.2023.110899

Katalog-ID:

ELV063999528

Nicht das Richtige dabei?

Schreiben Sie uns!