Locked mode detection during error field identification studies
At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the applica...
Ausführliche Beschreibung
Autor*in: |
Piron, L. [verfasserIn] Buratti, P. [verfasserIn] Falessi, M. [verfasserIn] Gambrioli, M. [verfasserIn] Graham, G. [verfasserIn] Lennhol, M. [verfasserIn] Valcarcel, D.F. [verfasserIn] Zonca, F. [verfasserIn] Henriques, R. [verfasserIn] Gerasimov, S. [verfasserIn] Hender, T. [verfasserIn] Joffrin, E. [verfasserIn] Kirov, K. [verfasserIn] Mitchell, J. [verfasserIn] Pucella, G. [verfasserIn] Sauter, O. [verfasserIn] Szepesi, G. [verfasserIn] Terranova, D. [verfasserIn] Zanca, P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Fusion engineering and design - New York, NY [u.a.] : Elsevier, 1987, 195 |
---|---|
Übergeordnetes Werk: |
volume:195 |
DOI / URN: |
10.1016/j.fusengdes.2023.113957 |
---|
Katalog-ID: |
ELV064152421 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064152421 | ||
003 | DE-627 | ||
005 | 20230929073117.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230915s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fusengdes.2023.113957 |2 doi | |
035 | |a (DE-627)ELV064152421 | ||
035 | |a (ELSEVIER)S0920-3796(23)00539-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 530 |q VZ |
084 | |a 33.81 |2 bkl | ||
100 | 1 | |a Piron, L. |e verfasserin |0 (orcid)0000-0002-7928-4661 |4 aut | |
245 | 1 | 0 | |a Locked mode detection during error field identification studies |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. | ||
650 | 4 | |a JET | |
650 | 4 | |a MHD instabilities | |
650 | 4 | |a Plasma Control | |
700 | 1 | |a Buratti, P. |e verfasserin |4 aut | |
700 | 1 | |a Falessi, M. |e verfasserin |4 aut | |
700 | 1 | |a Gambrioli, M. |e verfasserin |0 (orcid)0009-0004-3801-6937 |4 aut | |
700 | 1 | |a Graham, G. |e verfasserin |4 aut | |
700 | 1 | |a Lennhol, M. |e verfasserin |4 aut | |
700 | 1 | |a Valcarcel, D.F. |e verfasserin |4 aut | |
700 | 1 | |a Zonca, F. |e verfasserin |4 aut | |
700 | 1 | |a Henriques, R. |e verfasserin |4 aut | |
700 | 1 | |a Gerasimov, S. |e verfasserin |4 aut | |
700 | 1 | |a Hender, T. |e verfasserin |4 aut | |
700 | 1 | |a Joffrin, E. |e verfasserin |4 aut | |
700 | 1 | |a Kirov, K. |e verfasserin |4 aut | |
700 | 1 | |a Mitchell, J. |e verfasserin |4 aut | |
700 | 1 | |a Pucella, G. |e verfasserin |4 aut | |
700 | 1 | |a Sauter, O. |e verfasserin |4 aut | |
700 | 1 | |a Szepesi, G. |e verfasserin |4 aut | |
700 | 1 | |a Terranova, D. |e verfasserin |4 aut | |
700 | 1 | |a Zanca, P. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fusion engineering and design |d New York, NY [u.a.] : Elsevier, 1987 |g 195 |h Online-Ressource |w (DE-627)302722386 |w (DE-600)1492280-0 |w (DE-576)120883481 |x 0920-3796 |7 nnns |
773 | 1 | 8 | |g volume:195 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.81 |j Kernfusion |q VZ |
951 | |a AR | ||
952 | |d 195 |
author_variant |
l p lp p b pb m f mf m g mg g g gg m l ml d v dv f z fz r h rh s g sg t h th e j ej k k kk j m jm g p gp o s os g s gs d t dt p z pz |
---|---|
matchkey_str |
article:09203796:2023----::okdoeeetodrnerrilietf |
hierarchy_sort_str |
2023 |
bklnumber |
33.81 |
publishDate |
2023 |
allfields |
10.1016/j.fusengdes.2023.113957 doi (DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Piron, L. verfasserin (orcid)0000-0002-7928-4661 aut Locked mode detection during error field identification studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. JET MHD instabilities Plasma Control Buratti, P. verfasserin aut Falessi, M. verfasserin aut Gambrioli, M. verfasserin (orcid)0009-0004-3801-6937 aut Graham, G. verfasserin aut Lennhol, M. verfasserin aut Valcarcel, D.F. verfasserin aut Zonca, F. verfasserin aut Henriques, R. verfasserin aut Gerasimov, S. verfasserin aut Hender, T. verfasserin aut Joffrin, E. verfasserin aut Kirov, K. verfasserin aut Mitchell, J. verfasserin aut Pucella, G. verfasserin aut Sauter, O. verfasserin aut Szepesi, G. verfasserin aut Terranova, D. verfasserin aut Zanca, P. verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 195 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:195 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.81 Kernfusion VZ AR 195 |
spelling |
10.1016/j.fusengdes.2023.113957 doi (DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Piron, L. verfasserin (orcid)0000-0002-7928-4661 aut Locked mode detection during error field identification studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. JET MHD instabilities Plasma Control Buratti, P. verfasserin aut Falessi, M. verfasserin aut Gambrioli, M. verfasserin (orcid)0009-0004-3801-6937 aut Graham, G. verfasserin aut Lennhol, M. verfasserin aut Valcarcel, D.F. verfasserin aut Zonca, F. verfasserin aut Henriques, R. verfasserin aut Gerasimov, S. verfasserin aut Hender, T. verfasserin aut Joffrin, E. verfasserin aut Kirov, K. verfasserin aut Mitchell, J. verfasserin aut Pucella, G. verfasserin aut Sauter, O. verfasserin aut Szepesi, G. verfasserin aut Terranova, D. verfasserin aut Zanca, P. verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 195 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:195 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.81 Kernfusion VZ AR 195 |
allfields_unstemmed |
10.1016/j.fusengdes.2023.113957 doi (DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Piron, L. verfasserin (orcid)0000-0002-7928-4661 aut Locked mode detection during error field identification studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. JET MHD instabilities Plasma Control Buratti, P. verfasserin aut Falessi, M. verfasserin aut Gambrioli, M. verfasserin (orcid)0009-0004-3801-6937 aut Graham, G. verfasserin aut Lennhol, M. verfasserin aut Valcarcel, D.F. verfasserin aut Zonca, F. verfasserin aut Henriques, R. verfasserin aut Gerasimov, S. verfasserin aut Hender, T. verfasserin aut Joffrin, E. verfasserin aut Kirov, K. verfasserin aut Mitchell, J. verfasserin aut Pucella, G. verfasserin aut Sauter, O. verfasserin aut Szepesi, G. verfasserin aut Terranova, D. verfasserin aut Zanca, P. verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 195 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:195 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.81 Kernfusion VZ AR 195 |
allfieldsGer |
10.1016/j.fusengdes.2023.113957 doi (DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Piron, L. verfasserin (orcid)0000-0002-7928-4661 aut Locked mode detection during error field identification studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. JET MHD instabilities Plasma Control Buratti, P. verfasserin aut Falessi, M. verfasserin aut Gambrioli, M. verfasserin (orcid)0009-0004-3801-6937 aut Graham, G. verfasserin aut Lennhol, M. verfasserin aut Valcarcel, D.F. verfasserin aut Zonca, F. verfasserin aut Henriques, R. verfasserin aut Gerasimov, S. verfasserin aut Hender, T. verfasserin aut Joffrin, E. verfasserin aut Kirov, K. verfasserin aut Mitchell, J. verfasserin aut Pucella, G. verfasserin aut Sauter, O. verfasserin aut Szepesi, G. verfasserin aut Terranova, D. verfasserin aut Zanca, P. verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 195 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:195 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.81 Kernfusion VZ AR 195 |
allfieldsSound |
10.1016/j.fusengdes.2023.113957 doi (DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Piron, L. verfasserin (orcid)0000-0002-7928-4661 aut Locked mode detection during error field identification studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. JET MHD instabilities Plasma Control Buratti, P. verfasserin aut Falessi, M. verfasserin aut Gambrioli, M. verfasserin (orcid)0009-0004-3801-6937 aut Graham, G. verfasserin aut Lennhol, M. verfasserin aut Valcarcel, D.F. verfasserin aut Zonca, F. verfasserin aut Henriques, R. verfasserin aut Gerasimov, S. verfasserin aut Hender, T. verfasserin aut Joffrin, E. verfasserin aut Kirov, K. verfasserin aut Mitchell, J. verfasserin aut Pucella, G. verfasserin aut Sauter, O. verfasserin aut Szepesi, G. verfasserin aut Terranova, D. verfasserin aut Zanca, P. verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 195 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:195 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.81 Kernfusion VZ AR 195 |
language |
English |
source |
Enthalten in Fusion engineering and design 195 volume:195 |
sourceStr |
Enthalten in Fusion engineering and design 195 volume:195 |
format_phy_str_mv |
Article |
bklname |
Kernfusion |
institution |
findex.gbv.de |
topic_facet |
JET MHD instabilities Plasma Control |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Fusion engineering and design |
authorswithroles_txt_mv |
Piron, L. @@aut@@ Buratti, P. @@aut@@ Falessi, M. @@aut@@ Gambrioli, M. @@aut@@ Graham, G. @@aut@@ Lennhol, M. @@aut@@ Valcarcel, D.F. @@aut@@ Zonca, F. @@aut@@ Henriques, R. @@aut@@ Gerasimov, S. @@aut@@ Hender, T. @@aut@@ Joffrin, E. @@aut@@ Kirov, K. @@aut@@ Mitchell, J. @@aut@@ Pucella, G. @@aut@@ Sauter, O. @@aut@@ Szepesi, G. @@aut@@ Terranova, D. @@aut@@ Zanca, P. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302722386 |
dewey-sort |
3620 |
id |
ELV064152421 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064152421</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929073117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2023.113957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064152421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(23)00539-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piron, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7928-4661</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locked mode detection during error field identification studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">JET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MHD instabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buratti, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falessi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gambrioli, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0004-3801-6937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lennhol, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valcarcel, D.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zonca, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henriques, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerasimov, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hender, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joffrin, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirov, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitchell, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pucella, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sauter, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szepesi, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terranova, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanca, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fusion engineering and design</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1987</subfield><subfield code="g">195</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302722386</subfield><subfield code="w">(DE-600)1492280-0</subfield><subfield code="w">(DE-576)120883481</subfield><subfield code="x">0920-3796</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:195</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.81</subfield><subfield code="j">Kernfusion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">195</subfield></datafield></record></collection>
|
author |
Piron, L. |
spellingShingle |
Piron, L. ddc 620 bkl 33.81 misc JET misc MHD instabilities misc Plasma Control Locked mode detection during error field identification studies |
authorStr |
Piron, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302722386 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0920-3796 |
topic_title |
620 530 VZ 33.81 bkl Locked mode detection during error field identification studies JET MHD instabilities Plasma Control |
topic |
ddc 620 bkl 33.81 misc JET misc MHD instabilities misc Plasma Control |
topic_unstemmed |
ddc 620 bkl 33.81 misc JET misc MHD instabilities misc Plasma Control |
topic_browse |
ddc 620 bkl 33.81 misc JET misc MHD instabilities misc Plasma Control |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fusion engineering and design |
hierarchy_parent_id |
302722386 |
dewey-tens |
620 - Engineering 530 - Physics |
hierarchy_top_title |
Fusion engineering and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 |
title |
Locked mode detection during error field identification studies |
ctrlnum |
(DE-627)ELV064152421 (ELSEVIER)S0920-3796(23)00539-2 |
title_full |
Locked mode detection during error field identification studies |
author_sort |
Piron, L. |
journal |
Fusion engineering and design |
journalStr |
Fusion engineering and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Piron, L. Buratti, P. Falessi, M. Gambrioli, M. Graham, G. Lennhol, M. Valcarcel, D.F. Zonca, F. Henriques, R. Gerasimov, S. Hender, T. Joffrin, E. Kirov, K. Mitchell, J. Pucella, G. Sauter, O. Szepesi, G. Terranova, D. Zanca, P. |
container_volume |
195 |
class |
620 530 VZ 33.81 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Piron, L. |
doi_str_mv |
10.1016/j.fusengdes.2023.113957 |
normlink |
(ORCID)0000-0002-7928-4661 (ORCID)0009-0004-3801-6937 |
normlink_prefix_str_mv |
(orcid)0000-0002-7928-4661 (orcid)0009-0004-3801-6937 |
dewey-full |
620 530 |
author2-role |
verfasserin |
title_sort |
locked mode detection during error field identification studies |
title_auth |
Locked mode detection during error field identification studies |
abstract |
At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. |
abstractGer |
At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. |
abstract_unstemmed |
At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Locked mode detection during error field identification studies |
remote_bool |
true |
author2 |
Buratti, P. Falessi, M. Gambrioli, M. Graham, G. Lennhol, M. Valcarcel, D.F. Zonca, F. Henriques, R. Gerasimov, S. Hender, T. Joffrin, E. Kirov, K. Mitchell, J. Pucella, G. Sauter, O. Szepesi, G. Terranova, D. Zanca, P. |
author2Str |
Buratti, P. Falessi, M. Gambrioli, M. Graham, G. Lennhol, M. Valcarcel, D.F. Zonca, F. Henriques, R. Gerasimov, S. Hender, T. Joffrin, E. Kirov, K. Mitchell, J. Pucella, G. Sauter, O. Szepesi, G. Terranova, D. Zanca, P. |
ppnlink |
302722386 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fusengdes.2023.113957 |
up_date |
2024-07-06T20:13:54.347Z |
_version_ |
1803861973372239872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064152421</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929073117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2023.113957</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064152421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(23)00539-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Piron, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7928-4661</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locked mode detection during error field identification studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At the beginning of a machine operation, an assessment of the intrinsic error fields, spurious magnetic field perturbations which can affect plasma dynamics, is often carried out by executing the compass scan method [Scoville J.T. et al. Nucl. Fusion 43 250 (2003)]. This method relies on the application of 3D magnetic fields with various phases, induced by EF correction coils, to trigger a locked mode. The instant of locked mode onset allows the identification of the amplitude and phase of the intrinsic error field, from which the empirical correction currents for its minimization can be deduced. The presence of a locked mode needs to be carefully monitored during this study because of the potential disruptive mode behavior, especially in devices which can tolerate a maximum number of disruptions, as in SPARC and in ITER. A novel method, the so-called non-disruptive compass scan method [Paz-Soldan C. et al., Nuclear Fusion 54 (2014) 073013], avoids the disruption risk, as the name recalls, via magnetic island healing, i.e. stabilizing the locked mode. The magnetic island healing is achieved by switching off the error field correction coil current during the execution of the compass scan and asynchronously by increasing the plasma density. The crucial point of this new method is the detection of the locked mode to initiate the EFCC-density control actions. In this work, the locked mode detector adopted during non-disruptive compass scan test at JET is presented, together with brand-new locked mode metrics, which take into account the actual poloidal deformation due to a locked mode and a class of MHD instabilities, named Beta Alfvén Eigenmodes, that appear in the Mirnov signal in concomitance to the locked mode. The use of multiple metrics for locked mode detection during the execution of the non-disruptive compass scan increases the fidelity of the real-time control system to pinpoint the event, compensating possible magnetic probe failure, and initiate the control sequences to heal the magnetic island.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">JET</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MHD instabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buratti, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falessi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gambrioli, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0004-3801-6937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lennhol, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valcarcel, D.F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zonca, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henriques, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gerasimov, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hender, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joffrin, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirov, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitchell, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pucella, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sauter, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szepesi, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terranova, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanca, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fusion engineering and design</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1987</subfield><subfield code="g">195</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302722386</subfield><subfield code="w">(DE-600)1492280-0</subfield><subfield code="w">(DE-576)120883481</subfield><subfield code="x">0920-3796</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:195</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.81</subfield><subfield code="j">Kernfusion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">195</subfield></datafield></record></collection>
|
score |
7.4018145 |