Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes
Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modula...
Ausführliche Beschreibung
Autor*in: |
Huang, Maoquan [verfasserIn] Tang, G.H. [verfasserIn] Si, Qiaoling [verfasserIn] Pu, Jin Huan [verfasserIn] Sun, Qie [verfasserIn] Du, Mu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Renewable energy - Amsterdam [u.a.] : Elsevier Science, 1991, 216 |
---|---|
Übergeordnetes Werk: |
volume:216 |
DOI / URN: |
10.1016/j.renene.2023.119006 |
---|
Katalog-ID: |
ELV064157806 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064157806 | ||
003 | DE-627 | ||
005 | 20230929064303.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230915s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.renene.2023.119006 |2 doi | |
035 | |a (DE-627)ELV064157806 | ||
035 | |a (ELSEVIER)S0960-1481(23)00918-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Huang, Maoquan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. | ||
650 | 4 | |a Structural coloration | |
650 | 4 | |a Transparent aerogel | |
650 | 4 | |a Plasmonic nanoparticle | |
650 | 4 | |a Radiative properties | |
700 | 1 | |a Tang, G.H. |e verfasserin |4 aut | |
700 | 1 | |a Si, Qiaoling |e verfasserin |4 aut | |
700 | 1 | |a Pu, Jin Huan |e verfasserin |4 aut | |
700 | 1 | |a Sun, Qie |e verfasserin |4 aut | |
700 | 1 | |a Du, Mu |e verfasserin |0 (orcid)0000-0002-9614-5508 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Renewable energy |d Amsterdam [u.a.] : Elsevier Science, 1991 |g 216 |h Online-Ressource |w (DE-627)320412091 |w (DE-600)2001449-1 |w (DE-576)252613937 |x 1879-0682 |7 nnns |
773 | 1 | 8 | |g volume:216 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 216 |
author_variant |
m h mh g t gt q s qs j h p jh jhp q s qs m d md |
---|---|
matchkey_str |
article:18790682:2023----::lsoiarglidwihtutrlooainoeegefcetns |
hierarchy_sort_str |
2023 |
bklnumber |
52.56 |
publishDate |
2023 |
allfields |
10.1016/j.renene.2023.119006 doi (DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Huang, Maoquan verfasserin aut Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties Tang, G.H. verfasserin aut Si, Qiaoling verfasserin aut Pu, Jin Huan verfasserin aut Sun, Qie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 216 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 216 |
spelling |
10.1016/j.renene.2023.119006 doi (DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Huang, Maoquan verfasserin aut Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties Tang, G.H. verfasserin aut Si, Qiaoling verfasserin aut Pu, Jin Huan verfasserin aut Sun, Qie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 216 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 216 |
allfields_unstemmed |
10.1016/j.renene.2023.119006 doi (DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Huang, Maoquan verfasserin aut Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties Tang, G.H. verfasserin aut Si, Qiaoling verfasserin aut Pu, Jin Huan verfasserin aut Sun, Qie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 216 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 216 |
allfieldsGer |
10.1016/j.renene.2023.119006 doi (DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Huang, Maoquan verfasserin aut Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties Tang, G.H. verfasserin aut Si, Qiaoling verfasserin aut Pu, Jin Huan verfasserin aut Sun, Qie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 216 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 216 |
allfieldsSound |
10.1016/j.renene.2023.119006 doi (DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 DE-627 ger DE-627 rda eng 530 620 VZ 52.56 bkl Huang, Maoquan verfasserin aut Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties Tang, G.H. verfasserin aut Si, Qiaoling verfasserin aut Pu, Jin Huan verfasserin aut Sun, Qie verfasserin aut Du, Mu verfasserin (orcid)0000-0002-9614-5508 aut Enthalten in Renewable energy Amsterdam [u.a.] : Elsevier Science, 1991 216 Online-Ressource (DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 1879-0682 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.56 Regenerative Energieformen alternative Energieformen VZ AR 216 |
language |
English |
source |
Enthalten in Renewable energy 216 volume:216 |
sourceStr |
Enthalten in Renewable energy 216 volume:216 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Renewable energy |
authorswithroles_txt_mv |
Huang, Maoquan @@aut@@ Tang, G.H. @@aut@@ Si, Qiaoling @@aut@@ Pu, Jin Huan @@aut@@ Sun, Qie @@aut@@ Du, Mu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320412091 |
dewey-sort |
3530 |
id |
ELV064157806 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064157806</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929064303.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064157806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)00918-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Maoquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural coloration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Si, Qiaoling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Jin Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Qie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9614-5508</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">216</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield></datafield></record></collection>
|
author |
Huang, Maoquan |
spellingShingle |
Huang, Maoquan ddc 530 bkl 52.56 misc Structural coloration misc Transparent aerogel misc Plasmonic nanoparticle misc Radiative properties Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
authorStr |
Huang, Maoquan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320412091 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-0682 |
topic_title |
530 620 VZ 52.56 bkl Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes Structural coloration Transparent aerogel Plasmonic nanoparticle Radiative properties |
topic |
ddc 530 bkl 52.56 misc Structural coloration misc Transparent aerogel misc Plasmonic nanoparticle misc Radiative properties |
topic_unstemmed |
ddc 530 bkl 52.56 misc Structural coloration misc Transparent aerogel misc Plasmonic nanoparticle misc Radiative properties |
topic_browse |
ddc 530 bkl 52.56 misc Structural coloration misc Transparent aerogel misc Plasmonic nanoparticle misc Radiative properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Renewable energy |
hierarchy_parent_id |
320412091 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Renewable energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320412091 (DE-600)2001449-1 (DE-576)252613937 |
title |
Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
ctrlnum |
(DE-627)ELV064157806 (ELSEVIER)S0960-1481(23)00918-7 |
title_full |
Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
author_sort |
Huang, Maoquan |
journal |
Renewable energy |
journalStr |
Renewable energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Huang, Maoquan Tang, G.H. Si, Qiaoling Pu, Jin Huan Sun, Qie Du, Mu |
container_volume |
216 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Maoquan |
doi_str_mv |
10.1016/j.renene.2023.119006 |
normlink |
(ORCID)0000-0002-9614-5508 |
normlink_prefix_str_mv |
(orcid)0000-0002-9614-5508 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
title_auth |
Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
abstract |
Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. |
abstractGer |
Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. |
abstract_unstemmed |
Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes |
remote_bool |
true |
author2 |
Tang, G.H. Si, Qiaoling Pu, Jin Huan Sun, Qie Du, Mu |
author2Str |
Tang, G.H. Si, Qiaoling Pu, Jin Huan Sun, Qie Du, Mu |
ppnlink |
320412091 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.renene.2023.119006 |
up_date |
2024-07-06T20:14:08.040Z |
_version_ |
1803861987731439616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064157806</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929064303.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.renene.2023.119006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064157806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0960-1481(23)00918-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Maoquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasmonic aerogel window with structural coloration for energy-efficient and sustainable building envelopes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Renowned for superior thermal insulation properties, silica aerogel holds substantial promise for eco-friendly building construction. This study presents a novel colored transparent aerogel (CTA) window design that simultaneously achieves good light transmission, thermal insulation, and color modulation, which has not been reported before. The radiative properties of the core–shell plasmonic particle-doped aerogel were theoretically predicted by the combination of Mie theory and Monte Carlo methods. The results showed that the CTA window has high visible light transmittance ( ∼ 45%) and low thermal conductivity ( ∼ 0.018 W/m K), all while displaying an array of vivid colors. An energy consumption simulation of CTA windows in various climates in China showed potential energy savings of up to 90% compared to the single tinted window in severe cold regions. Moreover, a cost assessment of CTA windows is conducted to evaluate their economic feasibility and environmental benefits. This study introduces an innovative avenue to meet the escalating demand for both visually pleasing and energy-efficient materials, contributing profound insights into the realm of sustainable architectural design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural coloration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic nanoparticle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiative properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, G.H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Si, Qiaoling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Jin Huan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Qie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Mu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9614-5508</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Renewable energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1991</subfield><subfield code="g">216</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320412091</subfield><subfield code="w">(DE-600)2001449-1</subfield><subfield code="w">(DE-576)252613937</subfield><subfield code="x">1879-0682</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield></datafield></record></collection>
|
score |
7.40038 |