Scalable synthesis of Ta
Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was or...
Ausführliche Beschreibung
Autor*in: |
Tao, Wen [verfasserIn] Ruiyi, Li [verfasserIn] Pengwu, Xu [verfasserIn] Xiaohao, Liu [verfasserIn] Pengdong, Wang [verfasserIn] Xiaoxu, Lei [verfasserIn] Zaijun, Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied surface science - Amsterdam : Elsevier, 1985, 615 |
---|---|
Übergeordnetes Werk: |
volume:615 |
DOI / URN: |
10.1016/j.apsusc.2023.156387 |
---|
Katalog-ID: |
ELV064167011 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064167011 | ||
003 | DE-627 | ||
005 | 20230929094313.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230915s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apsusc.2023.156387 |2 doi | |
035 | |a (DE-627)ELV064167011 | ||
035 | |a (ELSEVIER)S0169-4332(23)00063-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q VZ |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Tao, Wen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Scalable synthesis of Ta |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. | ||
650 | 4 | |a Low valence tantalum oxide | |
650 | 4 | |a High-energy supercapacitor | |
650 | 4 | |a Wearable electronic device | |
650 | 4 | |a Motion monitoring | |
700 | 1 | |a Ruiyi, Li |e verfasserin |4 aut | |
700 | 1 | |a Pengwu, Xu |e verfasserin |4 aut | |
700 | 1 | |a Xiaohao, Liu |e verfasserin |4 aut | |
700 | 1 | |a Pengdong, Wang |e verfasserin |4 aut | |
700 | 1 | |a Xiaoxu, Lei |e verfasserin |4 aut | |
700 | 1 | |a Zaijun, Li |e verfasserin |0 (orcid)0000-0003-4524-5581 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied surface science |d Amsterdam : Elsevier, 1985 |g 615 |h Online-Ressource |w (DE-627)312151128 |w (DE-600)2002520-8 |w (DE-576)094476985 |7 nnns |
773 | 1 | 8 | |g volume:615 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |q VZ |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |q VZ |
951 | |a AR | ||
952 | |d 615 |
author_variant |
w t wt l r lr x p xp l x lx w p wp l x lx l z lz |
---|---|
matchkey_str |
taowenruiyilipengwuxuxiaohaoliupengdongw:2023----:clbeyte |
hierarchy_sort_str |
2023 |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2023 |
allfields |
10.1016/j.apsusc.2023.156387 doi (DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Tao, Wen verfasserin aut Scalable synthesis of Ta 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring Ruiyi, Li verfasserin aut Pengwu, Xu verfasserin aut Xiaohao, Liu verfasserin aut Pengdong, Wang verfasserin aut Xiaoxu, Lei verfasserin aut Zaijun, Li verfasserin (orcid)0000-0003-4524-5581 aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 615 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:615 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 615 |
spelling |
10.1016/j.apsusc.2023.156387 doi (DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Tao, Wen verfasserin aut Scalable synthesis of Ta 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring Ruiyi, Li verfasserin aut Pengwu, Xu verfasserin aut Xiaohao, Liu verfasserin aut Pengdong, Wang verfasserin aut Xiaoxu, Lei verfasserin aut Zaijun, Li verfasserin (orcid)0000-0003-4524-5581 aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 615 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:615 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 615 |
allfields_unstemmed |
10.1016/j.apsusc.2023.156387 doi (DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Tao, Wen verfasserin aut Scalable synthesis of Ta 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring Ruiyi, Li verfasserin aut Pengwu, Xu verfasserin aut Xiaohao, Liu verfasserin aut Pengdong, Wang verfasserin aut Xiaoxu, Lei verfasserin aut Zaijun, Li verfasserin (orcid)0000-0003-4524-5581 aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 615 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:615 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 615 |
allfieldsGer |
10.1016/j.apsusc.2023.156387 doi (DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Tao, Wen verfasserin aut Scalable synthesis of Ta 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring Ruiyi, Li verfasserin aut Pengwu, Xu verfasserin aut Xiaohao, Liu verfasserin aut Pengdong, Wang verfasserin aut Xiaoxu, Lei verfasserin aut Zaijun, Li verfasserin (orcid)0000-0003-4524-5581 aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 615 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:615 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 615 |
allfieldsSound |
10.1016/j.apsusc.2023.156387 doi (DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 DE-627 ger DE-627 rda eng 670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Tao, Wen verfasserin aut Scalable synthesis of Ta 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring Ruiyi, Li verfasserin aut Pengwu, Xu verfasserin aut Xiaohao, Liu verfasserin aut Pengdong, Wang verfasserin aut Xiaoxu, Lei verfasserin aut Zaijun, Li verfasserin (orcid)0000-0003-4524-5581 aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 615 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:615 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.68 Oberflächen Dünne Schichten Grenzflächen Physik VZ 35.18 Kolloidchemie Grenzflächenchemie VZ 52.78 Oberflächentechnik Wärmebehandlung VZ AR 615 |
language |
English |
source |
Enthalten in Applied surface science 615 volume:615 |
sourceStr |
Enthalten in Applied surface science 615 volume:615 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
topic_facet |
Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Applied surface science |
authorswithroles_txt_mv |
Tao, Wen @@aut@@ Ruiyi, Li @@aut@@ Pengwu, Xu @@aut@@ Xiaohao, Liu @@aut@@ Pengdong, Wang @@aut@@ Xiaoxu, Lei @@aut@@ Zaijun, Li @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
312151128 |
dewey-sort |
3670 |
id |
ELV064167011 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064167011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929094313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2023.156387</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064167011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(23)00063-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scalable synthesis of Ta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low valence tantalum oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-energy supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wearable electronic device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiyi, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pengwu, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiaohao, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pengdong, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiaoxu, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaijun, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4524-5581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">615</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:615</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">615</subfield></datafield></record></collection>
|
author |
Tao, Wen |
spellingShingle |
Tao, Wen ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Low valence tantalum oxide misc High-energy supercapacitor misc Wearable electronic device misc Motion monitoring Scalable synthesis of Ta |
authorStr |
Tao, Wen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312151128 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl Scalable synthesis of Ta Low valence tantalum oxide High-energy supercapacitor Wearable electronic device Motion monitoring |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Low valence tantalum oxide misc High-energy supercapacitor misc Wearable electronic device misc Motion monitoring |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Low valence tantalum oxide misc High-energy supercapacitor misc Wearable electronic device misc Motion monitoring |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 misc Low valence tantalum oxide misc High-energy supercapacitor misc Wearable electronic device misc Motion monitoring |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied surface science |
hierarchy_parent_id |
312151128 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Applied surface science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 |
title |
Scalable synthesis of Ta |
ctrlnum |
(DE-627)ELV064167011 (ELSEVIER)S0169-4332(23)00063-6 |
title_full |
Scalable synthesis of Ta |
author_sort |
Tao, Wen |
journal |
Applied surface science |
journalStr |
Applied surface science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Tao, Wen Ruiyi, Li Pengwu, Xu Xiaohao, Liu Pengdong, Wang Xiaoxu, Lei Zaijun, Li |
container_volume |
615 |
class |
670 530 660 VZ 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tao, Wen |
doi_str_mv |
10.1016/j.apsusc.2023.156387 |
normlink |
(ORCID)0000-0003-4524-5581 |
normlink_prefix_str_mv |
(orcid)0000-0003-4524-5581 |
dewey-full |
670 530 660 |
author2-role |
verfasserin |
title_sort |
scalable synthesis of ta |
title_auth |
Scalable synthesis of Ta |
abstract |
Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. |
abstractGer |
Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. |
abstract_unstemmed |
Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Scalable synthesis of Ta |
remote_bool |
true |
author2 |
Ruiyi, Li Pengwu, Xu Xiaohao, Liu Pengdong, Wang Xiaoxu, Lei Zaijun, Li |
author2Str |
Ruiyi, Li Pengwu, Xu Xiaohao, Liu Pengdong, Wang Xiaoxu, Lei Zaijun, Li |
ppnlink |
312151128 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apsusc.2023.156387 |
up_date |
2024-07-06T20:14:38.914Z |
_version_ |
1803862020106223616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064167011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929094313.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2023.156387</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064167011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(23)00063-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scalable synthesis of Ta</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low intrinsic conductivity and insufficient electroactive sites hinder wide applications of tantalum oxide in supercapacitors. The study reports scalable synthesis of Ta1.1O1.05/biomass carbon (C) composite with multiple structure engineering by boron-doped graphene quantum dot (B-GQD). B-GQD was orderly coordinated with Ta(V) ion to produce Ta-B-GQD complex, sucked into cotton and dried. Followed by annealing at 900 °C in N2 to obtain B-GQD-Ta1.1O1.05/C. Experimental result and theoretical calculation demonstrate that the introduction of B-GQD results in formation of Ta1.1O1.05 nanorods with low valence, small size, highly exposed high-index crystal faces, oxygen vacancies and PN junction. The structure dramatically improves the intrinsic conductivity, electroactive sites and voltage window range. The B-GQD-Ta1.1O1.05/C electrode exhibits high capacitance of 528.3 F g−1 at 0.5 A/g, which is more than that of Ta1.1O1.05 electrode (130.9 F g−1). The flexible symmetrical supercapacitor provides ultrahigh capacitance of 374.1 F g−1 at 1 A/g, high-rate capacity of 207.8 F g−1 at 50 A/g, capacity retention of 98.7 % after 10,000 cycles at 10 A/g and energy density of 113.9 W h Kg−1 at 521.2 W kg−1. The supercapacitor has been successfully applied in the self-powered attitude sensor driven via friction nanogenerator to monitor human walking posture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low valence tantalum oxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-energy supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wearable electronic device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion monitoring</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiyi, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pengwu, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiaohao, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pengdong, Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiaoxu, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zaijun, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4524-5581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">615</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:615</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">615</subfield></datafield></record></collection>
|
score |
7.400283 |