How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses?
Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand wha...
Ausführliche Beschreibung
Autor*in: |
Gaydon, Donald S. [verfasserIn] Khaliq, Tasneem [verfasserIn] Ahmad, Mobin-ud-Din [verfasserIn] Cheema, M.J.M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Field crops research - Amsterdam : Elsevier, 1978, 302 |
---|---|
Übergeordnetes Werk: |
volume:302 |
DOI / URN: |
10.1016/j.fcr.2023.109037 |
---|
Katalog-ID: |
ELV064229866 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064229866 | ||
003 | DE-627 | ||
005 | 20240131093318.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230915s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fcr.2023.109037 |2 doi | |
035 | |a (DE-627)ELV064229866 | ||
035 | |a (ELSEVIER)S0378-4290(23)00230-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q VZ |
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Gaydon, Donald S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. | ||
650 | 4 | |a APSIM | |
650 | 4 | |a Crop modelling | |
650 | 4 | |a Land and water productivity | |
650 | 4 | |a Sowing dates | |
650 | 4 | |a Climate change | |
650 | 4 | |a Pakistan | |
650 | 4 | |a Rice | |
650 | 4 | |a Wheat | |
700 | 1 | |a Khaliq, Tasneem |e verfasserin |4 aut | |
700 | 1 | |a Ahmad, Mobin-ud-Din |e verfasserin |4 aut | |
700 | 1 | |a Cheema, M.J.M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Field crops research |d Amsterdam : Elsevier, 1978 |g 302 |h Online-Ressource |w (DE-627)32050316X |w (DE-600)2012484-3 |w (DE-576)090954912 |x 1872-6852 |7 nnns |
773 | 1 | 8 | |g volume:302 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.00 |j Land- und Forstwirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 302 |
author_variant |
d s g ds dsg t k tk m u a mua m c mc |
---|---|
matchkey_str |
article:18726852:2023----::owlftrciaeiteaitnpnarcwetytmfethotmlgooisti |
hierarchy_sort_str |
2023 |
bklnumber |
48.00 |
publishDate |
2023 |
allfields |
10.1016/j.fcr.2023.109037 doi (DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 DE-627 ger DE-627 rda eng 630 640 VZ 48.00 bkl Gaydon, Donald S. verfasserin aut How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat Khaliq, Tasneem verfasserin aut Ahmad, Mobin-ud-Din verfasserin aut Cheema, M.J.M. verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 302 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:302 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 302 |
spelling |
10.1016/j.fcr.2023.109037 doi (DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 DE-627 ger DE-627 rda eng 630 640 VZ 48.00 bkl Gaydon, Donald S. verfasserin aut How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat Khaliq, Tasneem verfasserin aut Ahmad, Mobin-ud-Din verfasserin aut Cheema, M.J.M. verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 302 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:302 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 302 |
allfields_unstemmed |
10.1016/j.fcr.2023.109037 doi (DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 DE-627 ger DE-627 rda eng 630 640 VZ 48.00 bkl Gaydon, Donald S. verfasserin aut How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat Khaliq, Tasneem verfasserin aut Ahmad, Mobin-ud-Din verfasserin aut Cheema, M.J.M. verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 302 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:302 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 302 |
allfieldsGer |
10.1016/j.fcr.2023.109037 doi (DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 DE-627 ger DE-627 rda eng 630 640 VZ 48.00 bkl Gaydon, Donald S. verfasserin aut How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat Khaliq, Tasneem verfasserin aut Ahmad, Mobin-ud-Din verfasserin aut Cheema, M.J.M. verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 302 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:302 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 302 |
allfieldsSound |
10.1016/j.fcr.2023.109037 doi (DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 DE-627 ger DE-627 rda eng 630 640 VZ 48.00 bkl Gaydon, Donald S. verfasserin aut How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat Khaliq, Tasneem verfasserin aut Ahmad, Mobin-ud-Din verfasserin aut Cheema, M.J.M. verfasserin aut Enthalten in Field crops research Amsterdam : Elsevier, 1978 302 Online-Ressource (DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 1872-6852 nnns volume:302 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 302 |
language |
English |
source |
Enthalten in Field crops research 302 volume:302 |
sourceStr |
Enthalten in Field crops research 302 volume:302 |
format_phy_str_mv |
Article |
bklname |
Land- und Forstwirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Field crops research |
authorswithroles_txt_mv |
Gaydon, Donald S. @@aut@@ Khaliq, Tasneem @@aut@@ Ahmad, Mobin-ud-Din @@aut@@ Cheema, M.J.M. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
32050316X |
dewey-sort |
3630 |
id |
ELV064229866 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064229866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131093318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fcr.2023.109037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064229866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4290(23)00230-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gaydon, Donald S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">APSIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land and water productivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sowing dates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pakistan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khaliq, Tasneem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmad, Mobin-ud-Din</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, M.J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Field crops research</subfield><subfield code="d">Amsterdam : Elsevier, 1978</subfield><subfield code="g">302</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32050316X</subfield><subfield code="w">(DE-600)2012484-3</subfield><subfield code="w">(DE-576)090954912</subfield><subfield code="x">1872-6852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">302</subfield></datafield></record></collection>
|
author |
Gaydon, Donald S. |
spellingShingle |
Gaydon, Donald S. ddc 630 bkl 48.00 misc APSIM misc Crop modelling misc Land and water productivity misc Sowing dates misc Climate change misc Pakistan misc Rice misc Wheat How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
authorStr |
Gaydon, Donald S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32050316X |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1872-6852 |
topic_title |
630 640 VZ 48.00 bkl How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? APSIM Crop modelling Land and water productivity Sowing dates Climate change Pakistan Rice Wheat |
topic |
ddc 630 bkl 48.00 misc APSIM misc Crop modelling misc Land and water productivity misc Sowing dates misc Climate change misc Pakistan misc Rice misc Wheat |
topic_unstemmed |
ddc 630 bkl 48.00 misc APSIM misc Crop modelling misc Land and water productivity misc Sowing dates misc Climate change misc Pakistan misc Rice misc Wheat |
topic_browse |
ddc 630 bkl 48.00 misc APSIM misc Crop modelling misc Land and water productivity misc Sowing dates misc Climate change misc Pakistan misc Rice misc Wheat |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Field crops research |
hierarchy_parent_id |
32050316X |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Field crops research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32050316X (DE-600)2012484-3 (DE-576)090954912 |
title |
How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
ctrlnum |
(DE-627)ELV064229866 (ELSEVIER)S0378-4290(23)00230-7 |
title_full |
How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
author_sort |
Gaydon, Donald S. |
journal |
Field crops research |
journalStr |
Field crops research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Gaydon, Donald S. Khaliq, Tasneem Ahmad, Mobin-ud-Din Cheema, M.J.M. |
container_volume |
302 |
class |
630 640 VZ 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gaydon, Donald S. |
doi_str_mv |
10.1016/j.fcr.2023.109037 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
how will future climates in the pakistani punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
title_auth |
How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
abstract |
Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. |
abstractGer |
Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. |
abstract_unstemmed |
Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-FOR GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses? |
remote_bool |
true |
author2 |
Khaliq, Tasneem Ahmad, Mobin-ud-Din Cheema, M.J.M. |
author2Str |
Khaliq, Tasneem Ahmad, Mobin-ud-Din Cheema, M.J.M. |
ppnlink |
32050316X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fcr.2023.109037 |
up_date |
2024-07-06T20:17:39.732Z |
_version_ |
1803862209706590208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064229866</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240131093318.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fcr.2023.109037</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064229866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-4290(23)00230-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gaydon, Donald S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How will future climates in the Pakistani Punjab rice-wheat system affect the optimal agronomic settings, and can adaptation offset losses?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pakistan is one of the most vulnerable countries in the world to future climatic changes, already with significant water and food sustainability issues. Rice and wheat production in the Pakistani Punjab is central to national food security and hence of particular concern. We sought to understand what optimal rice-wheat (RW) farmer agronomic practices (those which maximise RW system gross margins (GM) and irrigated water productivity (WPi)) look like under each of 6 projected future climate change scenarios for mid-century (2050). We also examined the impact on 2050 RW production if current farmer practices remained unchanged, to gauge the potential benefits of the optimal adaptations. Cropping systems simulation with a validated model (APSIM) enabled analysis of a broad range of current management practice modifications (6 agronomic management settings parameters, including crop sowing dates, varieties, fertiliser rates, and deficit irrigation strategies) in a large Monte-Carlo Matrix (96,768 elements) for the highest-yielding district in the Punjab, Gujranwala. We evaluated annual crop production, GM, WPi, nitrate leaching, and total system evapotranspiration (ET) for all combinations on an annual basis over a 31-year simulation period for each future climate scenario (as well as the historical record) seeking optimal parameter combinations within each. If current farmer practices were to remain unchanged into the future, we found reductions in farmer GM’s by 35–50% by 2050, with WPi decreasing even further (40–60%). Adaptation of current RW management practices is therefore essential. By adopting optimal practices now (derived using the historical climate record) we found that farmers also place themselves well for future climates and our study suggests they can maintain or maybe even increase current GM’s by 5–30% (depending on climate scenario) through smart adaptation. The best agronomic practices in 2050 look almost indistinguishable from the best agronomic practices now, regardless of future climate scenario chosen. However, compared with a hypothetical farmer operating under optimal practices now, our study suggests that a farmer in 2050 will earn considerably less, with gross margins under optimal practices falling by 25–40%, depending on which future climate scenario is considered. Declines are largely due to falling rice yields under future conditions (20–50% across examined climate scenarios), with wheat yields likely to be maintained or even slightly increased. Our study also indicated an increase in ET (10–15%) across all RW practices (regardless of future climate scenario and despite projections for generally reduced rainfall, runoff and drainage), compared with historical conditions. Our study suggests a rice varietal improvement need for heat tolerance, but that current wheat varieties are suitable to 2050.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">APSIM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land and water productivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sowing dates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pakistan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wheat</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khaliq, Tasneem</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmad, Mobin-ud-Din</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheema, M.J.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Field crops research</subfield><subfield code="d">Amsterdam : Elsevier, 1978</subfield><subfield code="g">302</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32050316X</subfield><subfield code="w">(DE-600)2012484-3</subfield><subfield code="w">(DE-576)090954912</subfield><subfield code="x">1872-6852</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">302</subfield></datafield></record></collection>
|
score |
7.401597 |