Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS
A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tub...
Ausführliche Beschreibung
Autor*in: |
Ding, Xin [verfasserIn] Chen, Nan [verfasserIn] Jin, Tao [verfasserIn] Zhang, Xuedian [verfasserIn] Zhang, Rongfu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Balloon-like fiber interferometer |
---|
Übergeordnetes Werk: |
Enthalten in: Optics & laser technology - Amsterdam [u.a.] : Elsevier Science, 1971, 162 |
---|---|
Übergeordnetes Werk: |
volume:162 |
DOI / URN: |
10.1016/j.optlastec.2023.109302 |
---|
Katalog-ID: |
ELV064238628 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064238628 | ||
003 | DE-627 | ||
005 | 20230928122153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230915s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.optlastec.2023.109302 |2 doi | |
035 | |a (DE-627)ELV064238628 | ||
035 | |a (ELSEVIER)S0030-3992(23)00195-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.37 |2 bkl | ||
084 | |a 53.75 |2 bkl | ||
084 | |a 33.18 |2 bkl | ||
084 | |a 33.38 |2 bkl | ||
100 | 1 | |a Ding, Xin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. | ||
650 | 4 | |a Balloon-like fiber interferometer | |
650 | 4 | |a Magnetic field sensor | |
650 | 4 | |a Magnetic fluid (MF) | |
650 | 4 | |a Mach-Zehnder interferometer (MZI) | |
650 | 4 | |a Fabry-Perot interferometer (FPI) | |
700 | 1 | |a Chen, Nan |e verfasserin |0 (orcid)0000-0002-2077-3284 |4 aut | |
700 | 1 | |a Jin, Tao |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xuedian |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Rongfu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optics & laser technology |d Amsterdam [u.a.] : Elsevier Science, 1971 |g 162 |h Online-Ressource |w (DE-627)319950689 |w (DE-600)2000654-8 |w (DE-576)255266731 |x 1879-2545 |7 nnns |
773 | 1 | 8 | |g volume:162 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.37 |j Technische Optik |q VZ |
936 | b | k | |a 53.75 |j Optische Nachrichtentechnik |q VZ |
936 | b | k | |a 33.18 |j Optik |q VZ |
936 | b | k | |a 33.38 |j Quantenoptik |j nichtlineare Optik |q VZ |
951 | |a AR | ||
952 | |d 162 |
author_variant |
x d xd n c nc t j tj x z xz r z rz |
---|---|
matchkey_str |
article:18792545:2023----::eprtrcmestdalolkfbrantcilsnowt |
hierarchy_sort_str |
2023 |
bklnumber |
50.37 53.75 33.18 33.38 |
publishDate |
2023 |
allfields |
10.1016/j.optlastec.2023.109302 doi (DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Ding, Xin verfasserin aut Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) Chen, Nan verfasserin (orcid)0000-0002-2077-3284 aut Jin, Tao verfasserin aut Zhang, Xuedian verfasserin aut Zhang, Rongfu verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 162 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:162 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 162 |
spelling |
10.1016/j.optlastec.2023.109302 doi (DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Ding, Xin verfasserin aut Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) Chen, Nan verfasserin (orcid)0000-0002-2077-3284 aut Jin, Tao verfasserin aut Zhang, Xuedian verfasserin aut Zhang, Rongfu verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 162 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:162 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 162 |
allfields_unstemmed |
10.1016/j.optlastec.2023.109302 doi (DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Ding, Xin verfasserin aut Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) Chen, Nan verfasserin (orcid)0000-0002-2077-3284 aut Jin, Tao verfasserin aut Zhang, Xuedian verfasserin aut Zhang, Rongfu verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 162 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:162 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 162 |
allfieldsGer |
10.1016/j.optlastec.2023.109302 doi (DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Ding, Xin verfasserin aut Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) Chen, Nan verfasserin (orcid)0000-0002-2077-3284 aut Jin, Tao verfasserin aut Zhang, Xuedian verfasserin aut Zhang, Rongfu verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 162 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:162 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 162 |
allfieldsSound |
10.1016/j.optlastec.2023.109302 doi (DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 DE-627 ger DE-627 rda eng 530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Ding, Xin verfasserin aut Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) Chen, Nan verfasserin (orcid)0000-0002-2077-3284 aut Jin, Tao verfasserin aut Zhang, Xuedian verfasserin aut Zhang, Rongfu verfasserin aut Enthalten in Optics & laser technology Amsterdam [u.a.] : Elsevier Science, 1971 162 Online-Ressource (DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 1879-2545 nnns volume:162 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.37 Technische Optik VZ 53.75 Optische Nachrichtentechnik VZ 33.18 Optik VZ 33.38 Quantenoptik nichtlineare Optik VZ AR 162 |
language |
English |
source |
Enthalten in Optics & laser technology 162 volume:162 |
sourceStr |
Enthalten in Optics & laser technology 162 volume:162 |
format_phy_str_mv |
Article |
bklname |
Technische Optik Optische Nachrichtentechnik Optik Quantenoptik nichtlineare Optik |
institution |
findex.gbv.de |
topic_facet |
Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Optics & laser technology |
authorswithroles_txt_mv |
Ding, Xin @@aut@@ Chen, Nan @@aut@@ Jin, Tao @@aut@@ Zhang, Xuedian @@aut@@ Zhang, Rongfu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
319950689 |
dewey-sort |
3530 |
id |
ELV064238628 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064238628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928122153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlastec.2023.109302</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064238628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-3992(23)00195-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balloon-like fiber interferometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic field sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fluid (MF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mach-Zehnder interferometer (MZI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fabry-Perot interferometer (FPI)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2077-3284</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuedian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rongfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optics & laser technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1971</subfield><subfield code="g">162</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319950689</subfield><subfield code="w">(DE-600)2000654-8</subfield><subfield code="w">(DE-576)255266731</subfield><subfield code="x">1879-2545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.75</subfield><subfield code="j">Optische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">162</subfield></datafield></record></collection>
|
author |
Ding, Xin |
spellingShingle |
Ding, Xin ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Balloon-like fiber interferometer misc Magnetic field sensor misc Magnetic fluid (MF) misc Mach-Zehnder interferometer (MZI) misc Fabry-Perot interferometer (FPI) Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
authorStr |
Ding, Xin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319950689 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2545 |
topic_title |
530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS Balloon-like fiber interferometer Magnetic field sensor Magnetic fluid (MF) Mach-Zehnder interferometer (MZI) Fabry-Perot interferometer (FPI) |
topic |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Balloon-like fiber interferometer misc Magnetic field sensor misc Magnetic fluid (MF) misc Mach-Zehnder interferometer (MZI) misc Fabry-Perot interferometer (FPI) |
topic_unstemmed |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Balloon-like fiber interferometer misc Magnetic field sensor misc Magnetic fluid (MF) misc Mach-Zehnder interferometer (MZI) misc Fabry-Perot interferometer (FPI) |
topic_browse |
ddc 530 bkl 50.37 bkl 53.75 bkl 33.18 bkl 33.38 misc Balloon-like fiber interferometer misc Magnetic field sensor misc Magnetic fluid (MF) misc Mach-Zehnder interferometer (MZI) misc Fabry-Perot interferometer (FPI) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optics & laser technology |
hierarchy_parent_id |
319950689 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Optics & laser technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)319950689 (DE-600)2000654-8 (DE-576)255266731 |
title |
Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
ctrlnum |
(DE-627)ELV064238628 (ELSEVIER)S0030-3992(23)00195-0 |
title_full |
Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
author_sort |
Ding, Xin |
journal |
Optics & laser technology |
journalStr |
Optics & laser technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Ding, Xin Chen, Nan Jin, Tao Zhang, Xuedian Zhang, Rongfu |
container_volume |
162 |
class |
530 620 VZ 50.37 bkl 53.75 bkl 33.18 bkl 33.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ding, Xin |
doi_str_mv |
10.1016/j.optlastec.2023.109302 |
normlink |
(ORCID)0000-0002-2077-3284 |
normlink_prefix_str_mv |
(orcid)0000-0002-2077-3284 |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
temperature-compensated balloon-like fiber magnetic field sensor with f-p structure based on pdms |
title_auth |
Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
abstract |
A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. |
abstractGer |
A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. |
abstract_unstemmed |
A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS |
remote_bool |
true |
author2 |
Chen, Nan Jin, Tao Zhang, Xuedian Zhang, Rongfu |
author2Str |
Chen, Nan Jin, Tao Zhang, Xuedian Zhang, Rongfu |
ppnlink |
319950689 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.optlastec.2023.109302 |
up_date |
2024-07-06T20:18:18.833Z |
_version_ |
1803862250706960384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064238628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928122153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230915s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.optlastec.2023.109302</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064238628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0030-3992(23)00195-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.37</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Temperature-compensated balloon-like fiber magnetic field sensor with F-P structure based on PDMS</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A highly sensitive balloon-like fiber interferometer based on magnetic fluid (MF) nanomaterial for magnetic field measurement is proposed in this paper. The Mach-Zehnder interferometer (MZI) was formed by bending the single-mode fiber (SMF) nested in Teflon tubes, and then MF was filled into the tube of the balloon-like fiber interferometer by using the capillary effect. When the external magnetic field intensity changes, the refractive index (RI) of MF changes, resulting in the change of the difference in optical path. The change of magnetic field intensity can be detected by the shift of interference spectrum. Besides, a Fabry-Perot interference (FPI) by filling the SMF with polydimethylsiloxane (PDMS), which is only sensitive to temperature, is proposed to compensate the temperature during sensing of magnetic field. The transmission signal of the MZI and the reflection signal of FPI are cascaded together to the circulator, optical switch and other components, so that the magnetic field intensity and temperature can be measured simultaneously. The temperature sensitivity of the MZI and the FPI is –0.919 nm/℃ and1.559 nm/℃, respectively. FPI could be used to offset the effect of temperature. Consequently, the sensitivity of the magnetic field sensor can reach 0.683 nm/mT in the range of 0 to 10 mT, and the linear coefficient is 0.987. The system could be widely employed in lots of applications of magnetic field and temperature monitoring.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Balloon-like fiber interferometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic field sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fluid (MF)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mach-Zehnder interferometer (MZI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fabry-Perot interferometer (FPI)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Nan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2077-3284</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuedian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rongfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optics & laser technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1971</subfield><subfield code="g">162</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319950689</subfield><subfield code="w">(DE-600)2000654-8</subfield><subfield code="w">(DE-576)255266731</subfield><subfield code="x">1879-2545</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.37</subfield><subfield code="j">Technische Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.75</subfield><subfield code="j">Optische Nachrichtentechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.18</subfield><subfield code="j">Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.38</subfield><subfield code="j">Quantenoptik</subfield><subfield code="j">nichtlineare Optik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">162</subfield></datafield></record></collection>
|
score |
7.4020357 |