Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning

Purpose: Analysis pipelines based on the computation of radiomic features on medical images are widely used exploration tools across a large variety of image modalities. This study aims to define a robust processing pipeline based on Radiomics and Machine Learning (ML) to analyze multiparametric Mag...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ubaldi, Leonardo [verfasserIn]

Saponaro, Sara [verfasserIn]

Giuliano, Alessia [verfasserIn]

Talamonti, Cinzia [verfasserIn]

Retico, Alessandra [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Radiomics

Machine learning

Magnetic resonance imaging

Glioma grading

Robustness of features

Image normalization

Übergeordnetes Werk:

Enthalten in: Physica medica - Amsterdam : Elsevier, 1996, 107

Übergeordnetes Werk:

volume:107

DOI / URN:

10.1016/j.ejmp.2023.102538

Katalog-ID:

ELV064296822

Nicht das Richtige dabei?

Schreiben Sie uns!