Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model
The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigo...
Ausführliche Beschreibung
Autor*in: |
Wang, Xuesong [verfasserIn] Ye, Caiyang [verfasserIn] Quddus, Mohammed [verfasserIn] Morris, Andrew [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Accident analysis & prevention - Amsterdam [u.a.] : Elsevier, 1969, 192 |
---|---|
Übergeordnetes Werk: |
volume:192 |
DOI / URN: |
10.1016/j.aap.2023.107265 |
---|
Katalog-ID: |
ELV064365220 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064365220 | ||
003 | DE-627 | ||
005 | 20230927081941.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230916s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aap.2023.107265 |2 doi | |
035 | |a (DE-627)ELV064365220 | ||
035 | |a (ELSEVIER)S0001-4575(23)00312-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q VZ |
084 | |a 55.84 |2 bkl | ||
084 | |a 55.24 |2 bkl | ||
084 | |a 44.80 |2 bkl | ||
100 | 1 | |a Wang, Xuesong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. | ||
650 | 4 | |a Naturalistic driving data | |
650 | 4 | |a Vehicle-pedestrian conflict | |
650 | 4 | |a Responsibility-sensitive safety | |
650 | 4 | |a Model calibration | |
700 | 1 | |a Ye, Caiyang |e verfasserin |4 aut | |
700 | 1 | |a Quddus, Mohammed |e verfasserin |4 aut | |
700 | 1 | |a Morris, Andrew |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Accident analysis & prevention |d Amsterdam [u.a.] : Elsevier, 1969 |g 192 |h Online-Ressource |w (DE-627)306591707 |w (DE-600)1498752-1 |w (DE-576)081926820 |x 1879-2057 |7 nnns |
773 | 1 | 8 | |g volume:192 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 55.84 |j Straßenverkehr |q VZ |
936 | b | k | |a 55.24 |j Fahrzeugführung |j Fahrtechnik |q VZ |
936 | b | k | |a 44.80 |j Unfallmedizin |j Notfallmedizin |q VZ |
951 | |a AR | ||
952 | |d 192 |
author_variant |
x w xw c y cy m q mq a m am |
---|---|
matchkey_str |
article:18792057:2023----::eetinaeynnuoaediigniomnclbaigneautnteepn |
hierarchy_sort_str |
2023 |
bklnumber |
55.84 55.24 44.80 |
publishDate |
2023 |
allfields |
10.1016/j.aap.2023.107265 doi (DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 DE-627 ger DE-627 rda eng 380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Wang, Xuesong verfasserin aut Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration Ye, Caiyang verfasserin aut Quddus, Mohammed verfasserin aut Morris, Andrew verfasserin aut Enthalten in Accident analysis & prevention Amsterdam [u.a.] : Elsevier, 1969 192 Online-Ressource (DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 1879-2057 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 55.84 Straßenverkehr VZ 55.24 Fahrzeugführung Fahrtechnik VZ 44.80 Unfallmedizin Notfallmedizin VZ AR 192 |
spelling |
10.1016/j.aap.2023.107265 doi (DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 DE-627 ger DE-627 rda eng 380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Wang, Xuesong verfasserin aut Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration Ye, Caiyang verfasserin aut Quddus, Mohammed verfasserin aut Morris, Andrew verfasserin aut Enthalten in Accident analysis & prevention Amsterdam [u.a.] : Elsevier, 1969 192 Online-Ressource (DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 1879-2057 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 55.84 Straßenverkehr VZ 55.24 Fahrzeugführung Fahrtechnik VZ 44.80 Unfallmedizin Notfallmedizin VZ AR 192 |
allfields_unstemmed |
10.1016/j.aap.2023.107265 doi (DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 DE-627 ger DE-627 rda eng 380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Wang, Xuesong verfasserin aut Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration Ye, Caiyang verfasserin aut Quddus, Mohammed verfasserin aut Morris, Andrew verfasserin aut Enthalten in Accident analysis & prevention Amsterdam [u.a.] : Elsevier, 1969 192 Online-Ressource (DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 1879-2057 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 55.84 Straßenverkehr VZ 55.24 Fahrzeugführung Fahrtechnik VZ 44.80 Unfallmedizin Notfallmedizin VZ AR 192 |
allfieldsGer |
10.1016/j.aap.2023.107265 doi (DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 DE-627 ger DE-627 rda eng 380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Wang, Xuesong verfasserin aut Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration Ye, Caiyang verfasserin aut Quddus, Mohammed verfasserin aut Morris, Andrew verfasserin aut Enthalten in Accident analysis & prevention Amsterdam [u.a.] : Elsevier, 1969 192 Online-Ressource (DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 1879-2057 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 55.84 Straßenverkehr VZ 55.24 Fahrzeugführung Fahrtechnik VZ 44.80 Unfallmedizin Notfallmedizin VZ AR 192 |
allfieldsSound |
10.1016/j.aap.2023.107265 doi (DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 DE-627 ger DE-627 rda eng 380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Wang, Xuesong verfasserin aut Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration Ye, Caiyang verfasserin aut Quddus, Mohammed verfasserin aut Morris, Andrew verfasserin aut Enthalten in Accident analysis & prevention Amsterdam [u.a.] : Elsevier, 1969 192 Online-Ressource (DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 1879-2057 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 55.84 Straßenverkehr VZ 55.24 Fahrzeugführung Fahrtechnik VZ 44.80 Unfallmedizin Notfallmedizin VZ AR 192 |
language |
English |
source |
Enthalten in Accident analysis & prevention 192 volume:192 |
sourceStr |
Enthalten in Accident analysis & prevention 192 volume:192 |
format_phy_str_mv |
Article |
bklname |
Straßenverkehr Fahrzeugführung Fahrtechnik Unfallmedizin Notfallmedizin |
institution |
findex.gbv.de |
topic_facet |
Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration |
dewey-raw |
380 |
isfreeaccess_bool |
false |
container_title |
Accident analysis & prevention |
authorswithroles_txt_mv |
Wang, Xuesong @@aut@@ Ye, Caiyang @@aut@@ Quddus, Mohammed @@aut@@ Morris, Andrew @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306591707 |
dewey-sort |
3380 |
id |
ELV064365220 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064365220</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927081941.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230916s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aap.2023.107265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064365220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-4575(23)00312-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.24</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xuesong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturalistic driving data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle-pedestrian conflict</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Responsibility-sensitive safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model calibration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Caiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quddus, Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Andrew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Accident analysis & prevention</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1969</subfield><subfield code="g">192</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591707</subfield><subfield code="w">(DE-600)1498752-1</subfield><subfield code="w">(DE-576)081926820</subfield><subfield code="x">1879-2057</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.84</subfield><subfield code="j">Straßenverkehr</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.24</subfield><subfield code="j">Fahrzeugführung</subfield><subfield code="j">Fahrtechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.80</subfield><subfield code="j">Unfallmedizin</subfield><subfield code="j">Notfallmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield></datafield></record></collection>
|
author |
Wang, Xuesong |
spellingShingle |
Wang, Xuesong ddc 380 bkl 55.84 bkl 55.24 bkl 44.80 misc Naturalistic driving data misc Vehicle-pedestrian conflict misc Responsibility-sensitive safety misc Model calibration Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
authorStr |
Wang, Xuesong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591707 |
format |
electronic Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2057 |
topic_title |
380 VZ 55.84 bkl 55.24 bkl 44.80 bkl Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model Naturalistic driving data Vehicle-pedestrian conflict Responsibility-sensitive safety Model calibration |
topic |
ddc 380 bkl 55.84 bkl 55.24 bkl 44.80 misc Naturalistic driving data misc Vehicle-pedestrian conflict misc Responsibility-sensitive safety misc Model calibration |
topic_unstemmed |
ddc 380 bkl 55.84 bkl 55.24 bkl 44.80 misc Naturalistic driving data misc Vehicle-pedestrian conflict misc Responsibility-sensitive safety misc Model calibration |
topic_browse |
ddc 380 bkl 55.84 bkl 55.24 bkl 44.80 misc Naturalistic driving data misc Vehicle-pedestrian conflict misc Responsibility-sensitive safety misc Model calibration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Accident analysis & prevention |
hierarchy_parent_id |
306591707 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
Accident analysis & prevention |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591707 (DE-600)1498752-1 (DE-576)081926820 |
title |
Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
ctrlnum |
(DE-627)ELV064365220 (ELSEVIER)S0001-4575(23)00312-3 |
title_full |
Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
author_sort |
Wang, Xuesong |
journal |
Accident analysis & prevention |
journalStr |
Accident analysis & prevention |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Xuesong Ye, Caiyang Quddus, Mohammed Morris, Andrew |
container_volume |
192 |
class |
380 VZ 55.84 bkl 55.24 bkl 44.80 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Xuesong |
doi_str_mv |
10.1016/j.aap.2023.107265 |
dewey-full |
380 |
author2-role |
verfasserin |
title_sort |
pedestrian safety in an automated driving environment: calibrating and evaluating the responsibility-sensitive safety model |
title_auth |
Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
abstract |
The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. |
abstractGer |
The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. |
abstract_unstemmed |
The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model |
remote_bool |
true |
author2 |
Ye, Caiyang Quddus, Mohammed Morris, Andrew |
author2Str |
Ye, Caiyang Quddus, Mohammed Morris, Andrew |
ppnlink |
306591707 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aap.2023.107265 |
up_date |
2024-07-06T20:23:26.052Z |
_version_ |
1803862572850479104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064365220</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927081941.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230916s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aap.2023.107265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064365220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-4575(23)00312-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.84</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.24</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Xuesong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The severity of vehicle–pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle–pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB’s Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle–pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle–pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturalistic driving data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vehicle-pedestrian conflict</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Responsibility-sensitive safety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model calibration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ye, Caiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quddus, Mohammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Andrew</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Accident analysis & prevention</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1969</subfield><subfield code="g">192</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591707</subfield><subfield code="w">(DE-600)1498752-1</subfield><subfield code="w">(DE-576)081926820</subfield><subfield code="x">1879-2057</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.84</subfield><subfield code="j">Straßenverkehr</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.24</subfield><subfield code="j">Fahrzeugführung</subfield><subfield code="j">Fahrtechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.80</subfield><subfield code="j">Unfallmedizin</subfield><subfield code="j">Notfallmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield></datafield></record></collection>
|
score |
7.399892 |