The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides
Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this pote...
Ausführliche Beschreibung
Autor*in: |
Vieren, Elias [verfasserIn] Demeester, Toon [verfasserIn] Beyne, Wim [verfasserIn] Arteconi, Alessia [verfasserIn] De Paepe, Michel [verfasserIn] Lecompte, Steven [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 234 |
---|---|
Übergeordnetes Werk: |
volume:234 |
DOI / URN: |
10.1016/j.applthermaleng.2023.121197 |
---|
Katalog-ID: |
ELV064766314 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064766314 | ||
003 | DE-627 | ||
005 | 20230929055414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230921s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2023.121197 |2 doi | |
035 | |a (DE-627)ELV064766314 | ||
035 | |a (ELSEVIER)S1359-4311(23)01226-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Vieren, Elias |e verfasserin |0 (orcid)0000-0002-6023-3514 |4 aut | |
245 | 1 | 0 | |a The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. | ||
650 | 4 | |a High-temperature heat pump | |
650 | 4 | |a Transcritical cycles | |
650 | 4 | |a Industrial heat pump | |
650 | 4 | |a Temperature glide | |
650 | 4 | |a Drying | |
700 | 1 | |a Demeester, Toon |e verfasserin |0 (orcid)0000-0003-4893-7866 |4 aut | |
700 | 1 | |a Beyne, Wim |e verfasserin |0 (orcid)0000-0002-7450-9382 |4 aut | |
700 | 1 | |a Arteconi, Alessia |e verfasserin |4 aut | |
700 | 1 | |a De Paepe, Michel |e verfasserin |4 aut | |
700 | 1 | |a Lecompte, Steven |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 234 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:234 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 234 |
author_variant |
e v ev t d td w b wb a a aa p m d pm pmd s l sl |
---|---|
matchkey_str |
article:13594311:2023----::htemdnmcoetaohgtmeauernciiahapmccefrnutilrc |
hierarchy_sort_str |
2023 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2023 |
allfields |
10.1016/j.applthermaleng.2023.121197 doi (DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Vieren, Elias verfasserin (orcid)0000-0002-6023-3514 aut The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying Demeester, Toon verfasserin (orcid)0000-0003-4893-7866 aut Beyne, Wim verfasserin (orcid)0000-0002-7450-9382 aut Arteconi, Alessia verfasserin aut De Paepe, Michel verfasserin aut Lecompte, Steven verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 234 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 234 |
spelling |
10.1016/j.applthermaleng.2023.121197 doi (DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Vieren, Elias verfasserin (orcid)0000-0002-6023-3514 aut The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying Demeester, Toon verfasserin (orcid)0000-0003-4893-7866 aut Beyne, Wim verfasserin (orcid)0000-0002-7450-9382 aut Arteconi, Alessia verfasserin aut De Paepe, Michel verfasserin aut Lecompte, Steven verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 234 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 234 |
allfields_unstemmed |
10.1016/j.applthermaleng.2023.121197 doi (DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Vieren, Elias verfasserin (orcid)0000-0002-6023-3514 aut The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying Demeester, Toon verfasserin (orcid)0000-0003-4893-7866 aut Beyne, Wim verfasserin (orcid)0000-0002-7450-9382 aut Arteconi, Alessia verfasserin aut De Paepe, Michel verfasserin aut Lecompte, Steven verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 234 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 234 |
allfieldsGer |
10.1016/j.applthermaleng.2023.121197 doi (DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Vieren, Elias verfasserin (orcid)0000-0002-6023-3514 aut The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying Demeester, Toon verfasserin (orcid)0000-0003-4893-7866 aut Beyne, Wim verfasserin (orcid)0000-0002-7450-9382 aut Arteconi, Alessia verfasserin aut De Paepe, Michel verfasserin aut Lecompte, Steven verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 234 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 234 |
allfieldsSound |
10.1016/j.applthermaleng.2023.121197 doi (DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 DE-627 ger DE-627 rda eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Vieren, Elias verfasserin (orcid)0000-0002-6023-3514 aut The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying Demeester, Toon verfasserin (orcid)0000-0003-4893-7866 aut Beyne, Wim verfasserin (orcid)0000-0002-7450-9382 aut Arteconi, Alessia verfasserin aut De Paepe, Michel verfasserin aut Lecompte, Steven verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 234 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 234 |
language |
English |
source |
Enthalten in Applied thermal engineering 234 volume:234 |
sourceStr |
Enthalten in Applied thermal engineering 234 volume:234 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Vieren, Elias @@aut@@ Demeester, Toon @@aut@@ Beyne, Wim @@aut@@ Arteconi, Alessia @@aut@@ De Paepe, Michel @@aut@@ Lecompte, Steven @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV064766314 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064766314</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929055414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230921s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.121197</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064766314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)01226-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vieren, Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6023-3514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-temperature heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcritical cycles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drying</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demeester, Toon</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4893-7866</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beyne, Wim</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7450-9382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arteconi, Alessia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Paepe, Michel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lecompte, Steven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
author |
Vieren, Elias |
spellingShingle |
Vieren, Elias ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc High-temperature heat pump misc Transcritical cycles misc Industrial heat pump misc Temperature glide misc Drying The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
authorStr |
Vieren, Elias |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides High-temperature heat pump Transcritical cycles Industrial heat pump Temperature glide Drying |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc High-temperature heat pump misc Transcritical cycles misc Industrial heat pump misc Temperature glide misc Drying |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc High-temperature heat pump misc Transcritical cycles misc Industrial heat pump misc Temperature glide misc Drying |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc High-temperature heat pump misc Transcritical cycles misc Industrial heat pump misc Temperature glide misc Drying |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
ctrlnum |
(DE-627)ELV064766314 (ELSEVIER)S1359-4311(23)01226-7 |
title_full |
The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
author_sort |
Vieren, Elias |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Vieren, Elias Demeester, Toon Beyne, Wim Arteconi, Alessia De Paepe, Michel Lecompte, Steven |
container_volume |
234 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Vieren, Elias |
doi_str_mv |
10.1016/j.applthermaleng.2023.121197 |
normlink |
(ORCID)0000-0002-6023-3514 (ORCID)0000-0003-4893-7866 (ORCID)0000-0002-7450-9382 |
normlink_prefix_str_mv |
(orcid)0000-0002-6023-3514 (orcid)0000-0003-4893-7866 (orcid)0000-0002-7450-9382 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
the thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
title_auth |
The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
abstract |
Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. |
abstractGer |
Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. |
abstract_unstemmed |
Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides |
remote_bool |
true |
author2 |
Demeester, Toon Beyne, Wim Arteconi, Alessia De Paepe, Michel Lecompte, Steven |
author2Str |
Demeester, Toon Beyne, Wim Arteconi, Alessia De Paepe, Michel Lecompte, Steven |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2023.121197 |
up_date |
2024-07-06T20:41:02.024Z |
_version_ |
1803863680116326400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064766314</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230929055414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230921s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2023.121197</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064766314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(23)01226-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vieren, Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6023-3514</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The thermodynamic potential of high-temperature transcritical heat pump cycles for industrial processes with large temperature glides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Industrial heat pumps up to 200 °C are an emerging technology with the potential to reshape the industrial heating supply. For large heat sink temperature glides, transcritical cycles are able to increase the power-to-heat efficiency. Its potential is however yet to be unlocked. To examine this potential, a thermodynamic optimization model is proposed. The model includes robust cycle optimization, is able to screen a large set of working fluids, and includes proper post-processing. This model is applied to three highly relevant industrial cases, namely thermal oil heating, superheated steam drying and spray drying. The heat sink temperature glides for the respective case studies are 60 K, 81 K and 105 K. The results show that a temperature glide larger than 60 K is desired to achieve a better coefficient of performance (COP) with transcritical cycles compared to the classical subcritical cycles. Moreover, potential working fluids were identified for these high operational temperatures. For the case study with a heat sink temperature glide of 81 K, transcritical cycles allowed for a COP increase of 4.6%, whereas this increased to 7.3% for a heat sink temperature glide of 105 K. Furthermore, transcritical cycles introduce a much larger volumetric heating capacity, a lower compressor discharge temperature and a substantially lower pressure ratio. In addition, the best performing working fluids for subcritical cycles are highly flammable, which is only the case for some transcritical working fluids. Therefore, these cycles can be beneficial for temperature glides below 60 K. The compressor for transcritical cycles should however be able to cope with pressures up to 60 bar. If these compressors are available, transcritical cycles are shown to be superior compared to classical subcritical cycles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-temperature heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcritical cycles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial heat pump</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature glide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drying</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Demeester, Toon</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4893-7866</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beyne, Wim</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7450-9382</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arteconi, Alessia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Paepe, Michel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lecompte, Steven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
score |
7.4016123 |