A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies
Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlati...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jiajie [verfasserIn] Li, Rui [verfasserIn] Zhang, Mengbin [verfasserIn] Peng, Jingqi [verfasserIn] Fan, Yuchen [verfasserIn] Ma, Suxia [verfasserIn] Zhang, Jiansheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 282 |
---|---|
Übergeordnetes Werk: |
volume:282 |
DOI / URN: |
10.1016/j.energy.2023.128846 |
---|
Katalog-ID: |
ELV064776751 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064776751 | ||
003 | DE-627 | ||
005 | 20231121093045.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230926s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2023.128846 |2 doi | |
035 | |a (DE-627)ELV064776751 | ||
035 | |a (ELSEVIER)S0360-5442(23)02240-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Zhang, Jiajie |e verfasserin |4 aut | |
245 | 1 | 0 | |a A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. | ||
650 | 4 | |a Ash deposition | |
650 | 4 | |a Coplanar capacitance | |
650 | 4 | |a Fringing electric field | |
650 | 4 | |a PCB sensor | |
650 | 4 | |a Microscopic morphology | |
700 | 1 | |a Li, Rui |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Mengbin |e verfasserin |4 aut | |
700 | 1 | |a Peng, Jingqi |e verfasserin |4 aut | |
700 | 1 | |a Fan, Yuchen |e verfasserin |4 aut | |
700 | 1 | |a Ma, Suxia |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jiansheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 282 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:282 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 282 |
author_variant |
j z jz r l rl m z mz j p jp y f yf s m sm j z jz |
---|---|
matchkey_str |
article:18736785:2023----::nvlesrmnmtofrsdpstobsdnolnraaiacpicpehoeian |
hierarchy_sort_str |
2023 |
bklnumber |
50.70 |
publishDate |
2023 |
allfields |
10.1016/j.energy.2023.128846 doi (DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhang, Jiajie verfasserin aut A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology Li, Rui verfasserin aut Zhang, Mengbin verfasserin aut Peng, Jingqi verfasserin aut Fan, Yuchen verfasserin aut Ma, Suxia verfasserin aut Zhang, Jiansheng verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 282 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:282 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 282 |
spelling |
10.1016/j.energy.2023.128846 doi (DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhang, Jiajie verfasserin aut A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology Li, Rui verfasserin aut Zhang, Mengbin verfasserin aut Peng, Jingqi verfasserin aut Fan, Yuchen verfasserin aut Ma, Suxia verfasserin aut Zhang, Jiansheng verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 282 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:282 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 282 |
allfields_unstemmed |
10.1016/j.energy.2023.128846 doi (DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhang, Jiajie verfasserin aut A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology Li, Rui verfasserin aut Zhang, Mengbin verfasserin aut Peng, Jingqi verfasserin aut Fan, Yuchen verfasserin aut Ma, Suxia verfasserin aut Zhang, Jiansheng verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 282 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:282 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 282 |
allfieldsGer |
10.1016/j.energy.2023.128846 doi (DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhang, Jiajie verfasserin aut A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology Li, Rui verfasserin aut Zhang, Mengbin verfasserin aut Peng, Jingqi verfasserin aut Fan, Yuchen verfasserin aut Ma, Suxia verfasserin aut Zhang, Jiansheng verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 282 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:282 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 282 |
allfieldsSound |
10.1016/j.energy.2023.128846 doi (DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 DE-627 ger DE-627 rda eng 600 VZ 50.70 bkl Zhang, Jiajie verfasserin aut A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology Li, Rui verfasserin aut Zhang, Mengbin verfasserin aut Peng, Jingqi verfasserin aut Fan, Yuchen verfasserin aut Ma, Suxia verfasserin aut Zhang, Jiansheng verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 282 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:282 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.70 Energie: Allgemeines VZ AR 282 |
language |
English |
source |
Enthalten in Energy 282 volume:282 |
sourceStr |
Enthalten in Energy 282 volume:282 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Zhang, Jiajie @@aut@@ Li, Rui @@aut@@ Zhang, Mengbin @@aut@@ Peng, Jingqi @@aut@@ Fan, Yuchen @@aut@@ Ma, Suxia @@aut@@ Zhang, Jiansheng @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV064776751 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064776751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.128846</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064776751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02240-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ash deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coplanar capacitance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fringing electric field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCB sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscopic morphology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mengbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Jingqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yuchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Suxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">282</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:282</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">282</subfield></datafield></record></collection>
|
author |
Zhang, Jiajie |
spellingShingle |
Zhang, Jiajie ddc 600 bkl 50.70 misc Ash deposition misc Coplanar capacitance misc Fringing electric field misc PCB sensor misc Microscopic morphology A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
authorStr |
Zhang, Jiajie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 VZ 50.70 bkl A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies Ash deposition Coplanar capacitance Fringing electric field PCB sensor Microscopic morphology |
topic |
ddc 600 bkl 50.70 misc Ash deposition misc Coplanar capacitance misc Fringing electric field misc PCB sensor misc Microscopic morphology |
topic_unstemmed |
ddc 600 bkl 50.70 misc Ash deposition misc Coplanar capacitance misc Fringing electric field misc PCB sensor misc Microscopic morphology |
topic_browse |
ddc 600 bkl 50.70 misc Ash deposition misc Coplanar capacitance misc Fringing electric field misc PCB sensor misc Microscopic morphology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
ctrlnum |
(DE-627)ELV064776751 (ELSEVIER)S0360-5442(23)02240-5 |
title_full |
A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
author_sort |
Zhang, Jiajie |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Jiajie Li, Rui Zhang, Mengbin Peng, Jingqi Fan, Yuchen Ma, Suxia Zhang, Jiansheng |
container_volume |
282 |
class |
600 VZ 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Jiajie |
doi_str_mv |
10.1016/j.energy.2023.128846 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
a novel measurement method for ash deposition based on coplanar capacitance principle: theoretical, numerical and experimental studies |
title_auth |
A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
abstract |
Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. |
abstractGer |
Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. |
abstract_unstemmed |
Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies |
remote_bool |
true |
author2 |
Li, Rui Zhang, Mengbin Peng, Jingqi Fan, Yuchen Ma, Suxia Zhang, Jiansheng |
author2Str |
Li, Rui Zhang, Mengbin Peng, Jingqi Fan, Yuchen Ma, Suxia Zhang, Jiansheng |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2023.128846 |
up_date |
2024-07-06T20:43:02.477Z |
_version_ |
1803863806422548480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064776751</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2023.128846</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064776751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(23)02240-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jiajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel measurement method for ash deposition based on coplanar capacitance principle: Theoretical, numerical and experimental studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Monitoring for the fouling and slagging is critical to ensure the stable operation of gasification system. This paper proposes a novel measurement method for the ash deposition based on coplanar capacitance principle. A theoretical analysis of electrostatic field is conducted to obtain the correlation between the coplanar capacitance value and the deposition thickness. A finite element simulation is carried out to discuss the electric field characteristics of ash depositing on the coplanar capacitor. It shows that the capacitance value initially increases and tends to be constant with the increase of deposition thickness. The lower distance between positive and negative electrodes is favorable to the capacitance value (signal strength) but unfavorable to the maximum measurable thickness. Furthermore, a cold state experiment is conducted to verify the correctnesses of the theoretical and numerical models, and a hot state experiment is carried out to study the capacitance characteristics of sensor in the high temperature range of 700 °C–1200 °C. Results show that the permittivity of the material is lower under the higher test frequency, which leads to the lower capacitance value of sensor. The complex impedance curve of ash is conformed to IBLC dielectric model, this explains that the sensor capacitance increases with the test temperature increasing caused by the increase of permittivity due to the enlargement of ash grain. The change of Si/Al content has little effect on the dielectric properties of ash, however, the higher Fe2O3 content or the lower CaO content results into the lower ash fusion point, larger grain size, and thence higher permittivity and sensor capacitance. The maximum measurable thicknesses of the sensors in the cold state and hot state are 11.2 mm and 10.0 mm, respectively, which are independent with the test frequency, test temperature, and ash component.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ash deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coplanar capacitance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fringing electric field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCB sensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscopic morphology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Rui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Mengbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Jingqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Yuchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Suxia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiansheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">282</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:282</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">282</subfield></datafield></record></collection>
|
score |
7.401534 |