Prestoring lithium into SnO
For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served a...
Ausführliche Beschreibung
Autor*in: |
Wei, Tao [verfasserIn] Zhou, Yanyan [verfasserIn] Sun, Cheng [verfasserIn] Liu, Lesheng [verfasserIn] Wang, Sijia [verfasserIn] Wang, Mengting [verfasserIn] Liu, Ye [verfasserIn] Huang, Qing [verfasserIn] Zhuang, Quanchao [verfasserIn] Tang, Yongfu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: No title available - 84, Seite 89-97 |
---|---|
Übergeordnetes Werk: |
volume:84 ; pages:89-97 |
DOI / URN: |
10.1016/j.partic.2023.03.008 |
---|
Katalog-ID: |
ELV06480027X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV06480027X | ||
003 | DE-627 | ||
005 | 20230926130218.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230926s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.partic.2023.03.008 |2 doi | |
035 | |a (DE-627)ELV06480027X | ||
035 | |a (ELSEVIER)S1674-2001(23)00075-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Wei, Tao |e verfasserin |0 (orcid)0000-0001-9719-1787 |4 aut | |
245 | 1 | 0 | |a Prestoring lithium into SnO |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. | ||
650 | 4 | |a Lithiophilic | |
650 | 4 | |a Lithium metal anodes | |
650 | 4 | |a SnO | |
650 | 4 | |a 3D anode | |
650 | 4 | |a Dendrite-free | |
700 | 1 | |a Zhou, Yanyan |e verfasserin |4 aut | |
700 | 1 | |a Sun, Cheng |e verfasserin |4 aut | |
700 | 1 | |a Liu, Lesheng |e verfasserin |4 aut | |
700 | 1 | |a Wang, Sijia |e verfasserin |4 aut | |
700 | 1 | |a Wang, Mengting |e verfasserin |4 aut | |
700 | 1 | |a Liu, Ye |e verfasserin |4 aut | |
700 | 1 | |a Huang, Qing |e verfasserin |4 aut | |
700 | 1 | |a Zhuang, Quanchao |e verfasserin |4 aut | |
700 | 1 | |a Tang, Yongfu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t No title available |g 84, Seite 89-97 |w (DE-627)568488083 |x 1674-2001 |7 nnns |
773 | 1 | 8 | |g volume:84 |g pages:89-97 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2700 | ||
912 | |a GBV_ILN_2817 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 84 |h 89-97 |
author_variant |
t w tw y z yz c s cs l l ll s w sw m w mw y l yl q h qh q z qz y t yt |
---|---|
matchkey_str |
article:16742001:2023----::rsoigihui |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1016/j.partic.2023.03.008 doi (DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 DE-627 ger DE-627 rda eng Wei, Tao verfasserin (orcid)0000-0001-9719-1787 aut Prestoring lithium into SnO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free Zhou, Yanyan verfasserin aut Sun, Cheng verfasserin aut Liu, Lesheng verfasserin aut Wang, Sijia verfasserin aut Wang, Mengting verfasserin aut Liu, Ye verfasserin aut Huang, Qing verfasserin aut Zhuang, Quanchao verfasserin aut Tang, Yongfu verfasserin aut Enthalten in No title available 84, Seite 89-97 (DE-627)568488083 1674-2001 nnns volume:84 pages:89-97 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 84 89-97 |
spelling |
10.1016/j.partic.2023.03.008 doi (DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 DE-627 ger DE-627 rda eng Wei, Tao verfasserin (orcid)0000-0001-9719-1787 aut Prestoring lithium into SnO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free Zhou, Yanyan verfasserin aut Sun, Cheng verfasserin aut Liu, Lesheng verfasserin aut Wang, Sijia verfasserin aut Wang, Mengting verfasserin aut Liu, Ye verfasserin aut Huang, Qing verfasserin aut Zhuang, Quanchao verfasserin aut Tang, Yongfu verfasserin aut Enthalten in No title available 84, Seite 89-97 (DE-627)568488083 1674-2001 nnns volume:84 pages:89-97 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 84 89-97 |
allfields_unstemmed |
10.1016/j.partic.2023.03.008 doi (DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 DE-627 ger DE-627 rda eng Wei, Tao verfasserin (orcid)0000-0001-9719-1787 aut Prestoring lithium into SnO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free Zhou, Yanyan verfasserin aut Sun, Cheng verfasserin aut Liu, Lesheng verfasserin aut Wang, Sijia verfasserin aut Wang, Mengting verfasserin aut Liu, Ye verfasserin aut Huang, Qing verfasserin aut Zhuang, Quanchao verfasserin aut Tang, Yongfu verfasserin aut Enthalten in No title available 84, Seite 89-97 (DE-627)568488083 1674-2001 nnns volume:84 pages:89-97 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 84 89-97 |
allfieldsGer |
10.1016/j.partic.2023.03.008 doi (DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 DE-627 ger DE-627 rda eng Wei, Tao verfasserin (orcid)0000-0001-9719-1787 aut Prestoring lithium into SnO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free Zhou, Yanyan verfasserin aut Sun, Cheng verfasserin aut Liu, Lesheng verfasserin aut Wang, Sijia verfasserin aut Wang, Mengting verfasserin aut Liu, Ye verfasserin aut Huang, Qing verfasserin aut Zhuang, Quanchao verfasserin aut Tang, Yongfu verfasserin aut Enthalten in No title available 84, Seite 89-97 (DE-627)568488083 1674-2001 nnns volume:84 pages:89-97 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 84 89-97 |
allfieldsSound |
10.1016/j.partic.2023.03.008 doi (DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 DE-627 ger DE-627 rda eng Wei, Tao verfasserin (orcid)0000-0001-9719-1787 aut Prestoring lithium into SnO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free Zhou, Yanyan verfasserin aut Sun, Cheng verfasserin aut Liu, Lesheng verfasserin aut Wang, Sijia verfasserin aut Wang, Mengting verfasserin aut Liu, Ye verfasserin aut Huang, Qing verfasserin aut Zhuang, Quanchao verfasserin aut Tang, Yongfu verfasserin aut Enthalten in No title available 84, Seite 89-97 (DE-627)568488083 1674-2001 nnns volume:84 pages:89-97 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 84 89-97 |
language |
English |
source |
Enthalten in No title available 84, Seite 89-97 volume:84 pages:89-97 |
sourceStr |
Enthalten in No title available 84, Seite 89-97 volume:84 pages:89-97 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free |
isfreeaccess_bool |
false |
container_title |
No title available |
authorswithroles_txt_mv |
Wei, Tao @@aut@@ Zhou, Yanyan @@aut@@ Sun, Cheng @@aut@@ Liu, Lesheng @@aut@@ Wang, Sijia @@aut@@ Wang, Mengting @@aut@@ Liu, Ye @@aut@@ Huang, Qing @@aut@@ Zhuang, Quanchao @@aut@@ Tang, Yongfu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
568488083 |
id |
ELV06480027X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06480027X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.partic.2023.03.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06480027X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1674-2001(23)00075-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9719-1787</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prestoring lithium into SnO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithiophilic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium metal anodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SnO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendrite-free</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yanyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Lesheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Sijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mengting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhuang, Quanchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yongfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">84, Seite 89-97</subfield><subfield code="w">(DE-627)568488083</subfield><subfield code="x">1674-2001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">pages:89-97</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="h">89-97</subfield></datafield></record></collection>
|
author |
Wei, Tao |
spellingShingle |
Wei, Tao misc Lithiophilic misc Lithium metal anodes misc SnO misc 3D anode misc Dendrite-free Prestoring lithium into SnO |
authorStr |
Wei, Tao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)568488083 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1674-2001 |
topic_title |
Prestoring lithium into SnO Lithiophilic Lithium metal anodes SnO 3D anode Dendrite-free |
topic |
misc Lithiophilic misc Lithium metal anodes misc SnO misc 3D anode misc Dendrite-free |
topic_unstemmed |
misc Lithiophilic misc Lithium metal anodes misc SnO misc 3D anode misc Dendrite-free |
topic_browse |
misc Lithiophilic misc Lithium metal anodes misc SnO misc 3D anode misc Dendrite-free |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
No title available |
hierarchy_parent_id |
568488083 |
hierarchy_top_title |
No title available |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)568488083 |
title |
Prestoring lithium into SnO |
ctrlnum |
(DE-627)ELV06480027X (ELSEVIER)S1674-2001(23)00075-5 |
title_full |
Prestoring lithium into SnO |
author_sort |
Wei, Tao |
journal |
No title available |
journalStr |
No title available |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
89 |
author_browse |
Wei, Tao Zhou, Yanyan Sun, Cheng Liu, Lesheng Wang, Sijia Wang, Mengting Liu, Ye Huang, Qing Zhuang, Quanchao Tang, Yongfu |
container_volume |
84 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Tao |
doi_str_mv |
10.1016/j.partic.2023.03.008 |
normlink |
(ORCID)0000-0001-9719-1787 |
normlink_prefix_str_mv |
(orcid)0000-0001-9719-1787 |
author2-role |
verfasserin |
title_sort |
prestoring lithium into sno |
title_auth |
Prestoring lithium into SnO |
abstract |
For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. |
abstractGer |
For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. |
abstract_unstemmed |
For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2700 GBV_ILN_2817 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Prestoring lithium into SnO |
remote_bool |
true |
author2 |
Zhou, Yanyan Sun, Cheng Liu, Lesheng Wang, Sijia Wang, Mengting Liu, Ye Huang, Qing Zhuang, Quanchao Tang, Yongfu |
author2Str |
Zhou, Yanyan Sun, Cheng Liu, Lesheng Wang, Sijia Wang, Mengting Liu, Ye Huang, Qing Zhuang, Quanchao Tang, Yongfu |
ppnlink |
568488083 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.partic.2023.03.008 |
up_date |
2024-07-06T20:48:00.414Z |
_version_ |
1803864118831087616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV06480027X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.partic.2023.03.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06480027X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1674-2001(23)00075-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9719-1787</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prestoring lithium into SnO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For several decades, the promise of implementing of lithium (Li) metal anodes has been regarded as the ‘‘holy grail’’ for Li-based batteries. Herein, we have proposed a facile design of a carbon fiber cloth (CFC) framework coated with SnO2 nanoparticles through a hydrothermal process, which served as a reliable host for prestoring molten Li to produce a CFCSnO2@Li composite anode. XRD, TEM, HRTEM, XPS and different electrochemical characterizations were carried out. Owing to the synergetic effects of the 3D conductive CFC and the coated lithiophilic SnO2 nanoparticles, the designed CFC@SnO2@Li electrodes can buffer the volume changes and reduce the local current density, thus suppress the Li dendrites during cycling. Consequently, the CFC@SnO2 electrodes showed a high and stable CE of 98.6% for 1000 cycles at a current density of 1 mA cm−2 (1 mAh cm−2). What is more, at a high current density of 5 mA cm−2 and a high areal capacity of 5 mAh cm−2, the symmetric cell displayed relatively low overpotential and long cycling lifetime of 1600 h. The results confirm its great potential as lithium metal anodes in practical battery applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithiophilic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium metal anodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SnO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D anode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dendrite-free</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yanyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Lesheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Sijia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Mengting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhuang, Quanchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Yongfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">84, Seite 89-97</subfield><subfield code="w">(DE-627)568488083</subfield><subfield code="x">1674-2001</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:84</subfield><subfield code="g">pages:89-97</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">84</subfield><subfield code="h">89-97</subfield></datafield></record></collection>
|
score |
7.401187 |