A HCI self-healing circuit of a bandgap reference circuit with curvature compensation
In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coeffi...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jun-an [verfasserIn] Li, Chao [verfasserIn] Li, Dan [verfasserIn] Zhang, Chuandao [verfasserIn] Li, Tiehu [verfasserIn] Lu, Yunhua [verfasserIn] Zhang, Qingwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Microelectronics reliability - Amsterdam [u.a.] : Elsevier, 1962, 149 |
---|---|
Übergeordnetes Werk: |
volume:149 |
DOI / URN: |
10.1016/j.microrel.2023.115225 |
---|
Katalog-ID: |
ELV064817571 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV064817571 | ||
003 | DE-627 | ||
005 | 20230926130647.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230926s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.microrel.2023.115225 |2 doi | |
035 | |a (DE-627)ELV064817571 | ||
035 | |a (ELSEVIER)S0026-2714(23)00325-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.55 |2 bkl | ||
084 | |a 53.52 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Zhang, Jun-an |e verfasserin |4 aut | |
245 | 1 | 0 | |a A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. | ||
650 | 4 | |a Bandgap reference | |
650 | 4 | |a Hot carrier injection | |
650 | 4 | |a Temperature coefficient | |
650 | 4 | |a Degradation | |
650 | 4 | |a Self-healing | |
700 | 1 | |a Li, Chao |e verfasserin |4 aut | |
700 | 1 | |a Li, Dan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Chuandao |e verfasserin |4 aut | |
700 | 1 | |a Li, Tiehu |e verfasserin |4 aut | |
700 | 1 | |a Lu, Yunhua |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Qingwei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microelectronics reliability |d Amsterdam [u.a.] : Elsevier, 1962 |g 149 |h Online-Ressource |w (DE-627)320616185 |w (DE-600)2022028-5 |w (DE-576)259485268 |x 0026-2714 |7 nnns |
773 | 1 | 8 | |g volume:149 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.55 |j Mikroelektronik |q VZ |
936 | b | k | |a 53.52 |j Elektronische Schaltungen |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 149 |
author_variant |
j a z jaz c l cl d l dl c z cz t l tl y l yl q z qz |
---|---|
matchkey_str |
article:00262714:2023----::hiefelncrutfbngpeeeccrutihu |
hierarchy_sort_str |
2023 |
bklnumber |
53.55 53.52 50.16 |
publishDate |
2023 |
allfields |
10.1016/j.microrel.2023.115225 doi (DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 DE-627 ger DE-627 rda eng 620 VZ 53.55 bkl 53.52 bkl 50.16 bkl Zhang, Jun-an verfasserin aut A HCI self-healing circuit of a bandgap reference circuit with curvature compensation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing Li, Chao verfasserin aut Li, Dan verfasserin aut Zhang, Chuandao verfasserin aut Li, Tiehu verfasserin aut Lu, Yunhua verfasserin aut Zhang, Qingwei verfasserin aut Enthalten in Microelectronics reliability Amsterdam [u.a.] : Elsevier, 1962 149 Online-Ressource (DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 0026-2714 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.55 Mikroelektronik VZ 53.52 Elektronische Schaltungen VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 149 |
spelling |
10.1016/j.microrel.2023.115225 doi (DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 DE-627 ger DE-627 rda eng 620 VZ 53.55 bkl 53.52 bkl 50.16 bkl Zhang, Jun-an verfasserin aut A HCI self-healing circuit of a bandgap reference circuit with curvature compensation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing Li, Chao verfasserin aut Li, Dan verfasserin aut Zhang, Chuandao verfasserin aut Li, Tiehu verfasserin aut Lu, Yunhua verfasserin aut Zhang, Qingwei verfasserin aut Enthalten in Microelectronics reliability Amsterdam [u.a.] : Elsevier, 1962 149 Online-Ressource (DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 0026-2714 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.55 Mikroelektronik VZ 53.52 Elektronische Schaltungen VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 149 |
allfields_unstemmed |
10.1016/j.microrel.2023.115225 doi (DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 DE-627 ger DE-627 rda eng 620 VZ 53.55 bkl 53.52 bkl 50.16 bkl Zhang, Jun-an verfasserin aut A HCI self-healing circuit of a bandgap reference circuit with curvature compensation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing Li, Chao verfasserin aut Li, Dan verfasserin aut Zhang, Chuandao verfasserin aut Li, Tiehu verfasserin aut Lu, Yunhua verfasserin aut Zhang, Qingwei verfasserin aut Enthalten in Microelectronics reliability Amsterdam [u.a.] : Elsevier, 1962 149 Online-Ressource (DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 0026-2714 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.55 Mikroelektronik VZ 53.52 Elektronische Schaltungen VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 149 |
allfieldsGer |
10.1016/j.microrel.2023.115225 doi (DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 DE-627 ger DE-627 rda eng 620 VZ 53.55 bkl 53.52 bkl 50.16 bkl Zhang, Jun-an verfasserin aut A HCI self-healing circuit of a bandgap reference circuit with curvature compensation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing Li, Chao verfasserin aut Li, Dan verfasserin aut Zhang, Chuandao verfasserin aut Li, Tiehu verfasserin aut Lu, Yunhua verfasserin aut Zhang, Qingwei verfasserin aut Enthalten in Microelectronics reliability Amsterdam [u.a.] : Elsevier, 1962 149 Online-Ressource (DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 0026-2714 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.55 Mikroelektronik VZ 53.52 Elektronische Schaltungen VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 149 |
allfieldsSound |
10.1016/j.microrel.2023.115225 doi (DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 DE-627 ger DE-627 rda eng 620 VZ 53.55 bkl 53.52 bkl 50.16 bkl Zhang, Jun-an verfasserin aut A HCI self-healing circuit of a bandgap reference circuit with curvature compensation 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing Li, Chao verfasserin aut Li, Dan verfasserin aut Zhang, Chuandao verfasserin aut Li, Tiehu verfasserin aut Lu, Yunhua verfasserin aut Zhang, Qingwei verfasserin aut Enthalten in Microelectronics reliability Amsterdam [u.a.] : Elsevier, 1962 149 Online-Ressource (DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 0026-2714 nnns volume:149 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.55 Mikroelektronik VZ 53.52 Elektronische Schaltungen VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 149 |
language |
English |
source |
Enthalten in Microelectronics reliability 149 volume:149 |
sourceStr |
Enthalten in Microelectronics reliability 149 volume:149 |
format_phy_str_mv |
Article |
bklname |
Mikroelektronik Elektronische Schaltungen Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Microelectronics reliability |
authorswithroles_txt_mv |
Zhang, Jun-an @@aut@@ Li, Chao @@aut@@ Li, Dan @@aut@@ Zhang, Chuandao @@aut@@ Li, Tiehu @@aut@@ Lu, Yunhua @@aut@@ Zhang, Qingwei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320616185 |
dewey-sort |
3620 |
id |
ELV064817571 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064817571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microrel.2023.115225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064817571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-2714(23)00325-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jun-an</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A HCI self-healing circuit of a bandgap reference circuit with curvature compensation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandgap reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot carrier injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-healing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chuandao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tiehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Yunhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microelectronics reliability</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1962</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320616185</subfield><subfield code="w">(DE-600)2022028-5</subfield><subfield code="w">(DE-576)259485268</subfield><subfield code="x">0026-2714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.55</subfield><subfield code="j">Mikroelektronik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.52</subfield><subfield code="j">Elektronische Schaltungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
author |
Zhang, Jun-an |
spellingShingle |
Zhang, Jun-an ddc 620 bkl 53.55 bkl 53.52 bkl 50.16 misc Bandgap reference misc Hot carrier injection misc Temperature coefficient misc Degradation misc Self-healing A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
authorStr |
Zhang, Jun-an |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320616185 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0026-2714 |
topic_title |
620 VZ 53.55 bkl 53.52 bkl 50.16 bkl A HCI self-healing circuit of a bandgap reference circuit with curvature compensation Bandgap reference Hot carrier injection Temperature coefficient Degradation Self-healing |
topic |
ddc 620 bkl 53.55 bkl 53.52 bkl 50.16 misc Bandgap reference misc Hot carrier injection misc Temperature coefficient misc Degradation misc Self-healing |
topic_unstemmed |
ddc 620 bkl 53.55 bkl 53.52 bkl 50.16 misc Bandgap reference misc Hot carrier injection misc Temperature coefficient misc Degradation misc Self-healing |
topic_browse |
ddc 620 bkl 53.55 bkl 53.52 bkl 50.16 misc Bandgap reference misc Hot carrier injection misc Temperature coefficient misc Degradation misc Self-healing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microelectronics reliability |
hierarchy_parent_id |
320616185 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Microelectronics reliability |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320616185 (DE-600)2022028-5 (DE-576)259485268 |
title |
A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
ctrlnum |
(DE-627)ELV064817571 (ELSEVIER)S0026-2714(23)00325-6 |
title_full |
A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
author_sort |
Zhang, Jun-an |
journal |
Microelectronics reliability |
journalStr |
Microelectronics reliability |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Jun-an Li, Chao Li, Dan Zhang, Chuandao Li, Tiehu Lu, Yunhua Zhang, Qingwei |
container_volume |
149 |
class |
620 VZ 53.55 bkl 53.52 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Jun-an |
doi_str_mv |
10.1016/j.microrel.2023.115225 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
a hci self-healing circuit of a bandgap reference circuit with curvature compensation |
title_auth |
A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
abstract |
In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. |
abstractGer |
In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. |
abstract_unstemmed |
In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A HCI self-healing circuit of a bandgap reference circuit with curvature compensation |
remote_bool |
true |
author2 |
Li, Chao Li, Dan Zhang, Chuandao Li, Tiehu Lu, Yunhua Zhang, Qingwei |
author2Str |
Li, Chao Li, Dan Zhang, Chuandao Li, Tiehu Lu, Yunhua Zhang, Qingwei |
ppnlink |
320616185 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.microrel.2023.115225 |
up_date |
2024-07-06T20:51:32.342Z |
_version_ |
1803864341053702144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064817571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.microrel.2023.115225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064817571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0026-2714(23)00325-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jun-an</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A HCI self-healing circuit of a bandgap reference circuit with curvature compensation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the performance degradation of a bandgap reference circuit with curvature compensation under the hot carrier injection (HCI) effect is studied, and a self-healing circuit is proposed. The intrinsic performance of the curvature compensation bandgap circuit achieved a temperature coefficient (TC) of 1.949 ppm/°C and an output reference voltage of 384.748 mV under a 1.2 V power supply voltage between −40 °C to 125 °C. The TC of the reference circuit will increase to 8.033 ppm/°C and the output reference voltage decreases to 384.318 mV after 50 years under the HCI effect. The study found that the gain decrease of the op-amp in the reference circuit leads to a decrease in the output voltage, and the decrease of the compensation current in the curvature compensation circuit leads to the degradation of the TC. A self-healing circuit is designed to mitigate the impact of the HCI effect. The simulation results show that the TC of the self-healing reference circuit is 3.934 ppm/°C and the output reference voltage is 384.655 mV after 50 years under the HCI effect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bandgap reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hot carrier injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-healing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chuandao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tiehu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Yunhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qingwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microelectronics reliability</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1962</subfield><subfield code="g">149</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320616185</subfield><subfield code="w">(DE-600)2022028-5</subfield><subfield code="w">(DE-576)259485268</subfield><subfield code="x">0026-2714</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.55</subfield><subfield code="j">Mikroelektronik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.52</subfield><subfield code="j">Elektronische Schaltungen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">149</subfield></datafield></record></collection>
|
score |
7.400194 |