Calibration and application of damage and rate-dependent constitutive model for SPCE steel
The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves...
Ausführliche Beschreibung
Autor*in: |
Jing, Guoxi [verfasserIn] Yu, Yongtao [verfasserIn] Sun, Xiuxiu [verfasserIn] Sun, Jiangang [verfasserIn] Chen, Guang [verfasserIn] Li, Shubo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Rate-dependent constitutive model |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of constructional steel research - Amsterdam [u.a.] : Elsevier Science, 1980, 211 |
---|---|
Übergeordnetes Werk: |
volume:211 |
DOI / URN: |
10.1016/j.jcsr.2023.108174 |
---|
Katalog-ID: |
ELV064823709 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV064823709 | ||
003 | DE-627 | ||
005 | 20230926130858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230926s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcsr.2023.108174 |2 doi | |
035 | |a (DE-627)ELV064823709 | ||
035 | |a (ELSEVIER)S0143-974X(23)00401-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |a 670 |q VZ |
084 | |a 56.13 |2 bkl | ||
100 | 1 | |a Jing, Guoxi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. | ||
650 | 4 | |a SPCE steel | |
650 | 4 | |a Effect of strain rate | |
650 | 4 | |a Rate-dependent constitutive model | |
650 | 4 | |a Determination of ductile damage parameters | |
650 | 4 | |a Simulation verification | |
700 | 1 | |a Yu, Yongtao |e verfasserin |4 aut | |
700 | 1 | |a Sun, Xiuxiu |e verfasserin |4 aut | |
700 | 1 | |a Sun, Jiangang |e verfasserin |4 aut | |
700 | 1 | |a Chen, Guang |e verfasserin |4 aut | |
700 | 1 | |a Li, Shubo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of constructional steel research |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 211 |h Online-Ressource |w (DE-627)306586339 |w (DE-600)1498182-8 |w (DE-576)098690671 |7 nnns |
773 | 1 | 8 | |g volume:211 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 56.13 |j Stahlbau |j Metallbau |q VZ |
951 | |a AR | ||
952 | |d 211 |
author_variant |
g j gj y y yy x s xs j s js g c gc s l sl |
---|---|
matchkey_str |
jingguoxiyuyongtaosunxiuxiusunjiangangch:2023----:airtoadplctoodmgadaeeedncntt |
hierarchy_sort_str |
2023 |
bklnumber |
56.13 |
publishDate |
2023 |
allfields |
10.1016/j.jcsr.2023.108174 doi (DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 DE-627 ger DE-627 rda eng 620 660 670 VZ 56.13 bkl Jing, Guoxi verfasserin aut Calibration and application of damage and rate-dependent constitutive model for SPCE steel 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification Yu, Yongtao verfasserin aut Sun, Xiuxiu verfasserin aut Sun, Jiangang verfasserin aut Chen, Guang verfasserin aut Li, Shubo verfasserin aut Enthalten in Journal of constructional steel research Amsterdam [u.a.] : Elsevier Science, 1980 211 Online-Ressource (DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 nnns volume:211 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.13 Stahlbau Metallbau VZ AR 211 |
spelling |
10.1016/j.jcsr.2023.108174 doi (DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 DE-627 ger DE-627 rda eng 620 660 670 VZ 56.13 bkl Jing, Guoxi verfasserin aut Calibration and application of damage and rate-dependent constitutive model for SPCE steel 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification Yu, Yongtao verfasserin aut Sun, Xiuxiu verfasserin aut Sun, Jiangang verfasserin aut Chen, Guang verfasserin aut Li, Shubo verfasserin aut Enthalten in Journal of constructional steel research Amsterdam [u.a.] : Elsevier Science, 1980 211 Online-Ressource (DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 nnns volume:211 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.13 Stahlbau Metallbau VZ AR 211 |
allfields_unstemmed |
10.1016/j.jcsr.2023.108174 doi (DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 DE-627 ger DE-627 rda eng 620 660 670 VZ 56.13 bkl Jing, Guoxi verfasserin aut Calibration and application of damage and rate-dependent constitutive model for SPCE steel 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification Yu, Yongtao verfasserin aut Sun, Xiuxiu verfasserin aut Sun, Jiangang verfasserin aut Chen, Guang verfasserin aut Li, Shubo verfasserin aut Enthalten in Journal of constructional steel research Amsterdam [u.a.] : Elsevier Science, 1980 211 Online-Ressource (DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 nnns volume:211 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.13 Stahlbau Metallbau VZ AR 211 |
allfieldsGer |
10.1016/j.jcsr.2023.108174 doi (DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 DE-627 ger DE-627 rda eng 620 660 670 VZ 56.13 bkl Jing, Guoxi verfasserin aut Calibration and application of damage and rate-dependent constitutive model for SPCE steel 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification Yu, Yongtao verfasserin aut Sun, Xiuxiu verfasserin aut Sun, Jiangang verfasserin aut Chen, Guang verfasserin aut Li, Shubo verfasserin aut Enthalten in Journal of constructional steel research Amsterdam [u.a.] : Elsevier Science, 1980 211 Online-Ressource (DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 nnns volume:211 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.13 Stahlbau Metallbau VZ AR 211 |
allfieldsSound |
10.1016/j.jcsr.2023.108174 doi (DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 DE-627 ger DE-627 rda eng 620 660 670 VZ 56.13 bkl Jing, Guoxi verfasserin aut Calibration and application of damage and rate-dependent constitutive model for SPCE steel 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification Yu, Yongtao verfasserin aut Sun, Xiuxiu verfasserin aut Sun, Jiangang verfasserin aut Chen, Guang verfasserin aut Li, Shubo verfasserin aut Enthalten in Journal of constructional steel research Amsterdam [u.a.] : Elsevier Science, 1980 211 Online-Ressource (DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 nnns volume:211 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 56.13 Stahlbau Metallbau VZ AR 211 |
language |
English |
source |
Enthalten in Journal of constructional steel research 211 volume:211 |
sourceStr |
Enthalten in Journal of constructional steel research 211 volume:211 |
format_phy_str_mv |
Article |
bklname |
Stahlbau Metallbau |
institution |
findex.gbv.de |
topic_facet |
SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of constructional steel research |
authorswithroles_txt_mv |
Jing, Guoxi @@aut@@ Yu, Yongtao @@aut@@ Sun, Xiuxiu @@aut@@ Sun, Jiangang @@aut@@ Chen, Guang @@aut@@ Li, Shubo @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
306586339 |
dewey-sort |
3620 |
id |
ELV064823709 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064823709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcsr.2023.108174</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064823709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-974X(23)00401-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jing, Guoxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calibration and application of damage and rate-dependent constitutive model for SPCE steel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPCE steel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effect of strain rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate-dependent constitutive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determination of ductile damage parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation verification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yongtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xiuxiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiangang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Guang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shubo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of constructional steel research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">211</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586339</subfield><subfield code="w">(DE-600)1498182-8</subfield><subfield code="w">(DE-576)098690671</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.13</subfield><subfield code="j">Stahlbau</subfield><subfield code="j">Metallbau</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">211</subfield></datafield></record></collection>
|
author |
Jing, Guoxi |
spellingShingle |
Jing, Guoxi ddc 620 bkl 56.13 misc SPCE steel misc Effect of strain rate misc Rate-dependent constitutive model misc Determination of ductile damage parameters misc Simulation verification Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
authorStr |
Jing, Guoxi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306586339 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
620 660 670 VZ 56.13 bkl Calibration and application of damage and rate-dependent constitutive model for SPCE steel SPCE steel Effect of strain rate Rate-dependent constitutive model Determination of ductile damage parameters Simulation verification |
topic |
ddc 620 bkl 56.13 misc SPCE steel misc Effect of strain rate misc Rate-dependent constitutive model misc Determination of ductile damage parameters misc Simulation verification |
topic_unstemmed |
ddc 620 bkl 56.13 misc SPCE steel misc Effect of strain rate misc Rate-dependent constitutive model misc Determination of ductile damage parameters misc Simulation verification |
topic_browse |
ddc 620 bkl 56.13 misc SPCE steel misc Effect of strain rate misc Rate-dependent constitutive model misc Determination of ductile damage parameters misc Simulation verification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of constructional steel research |
hierarchy_parent_id |
306586339 |
dewey-tens |
620 - Engineering 660 - Chemical engineering 670 - Manufacturing |
hierarchy_top_title |
Journal of constructional steel research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306586339 (DE-600)1498182-8 (DE-576)098690671 |
title |
Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
ctrlnum |
(DE-627)ELV064823709 (ELSEVIER)S0143-974X(23)00401-7 |
title_full |
Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
author_sort |
Jing, Guoxi |
journal |
Journal of constructional steel research |
journalStr |
Journal of constructional steel research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Jing, Guoxi Yu, Yongtao Sun, Xiuxiu Sun, Jiangang Chen, Guang Li, Shubo |
container_volume |
211 |
class |
620 660 670 VZ 56.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jing, Guoxi |
doi_str_mv |
10.1016/j.jcsr.2023.108174 |
dewey-full |
620 660 670 |
author2-role |
verfasserin |
title_sort |
calibration and application of damage and rate-dependent constitutive model for spce steel |
title_auth |
Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
abstract |
The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. |
abstractGer |
The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. |
abstract_unstemmed |
The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Calibration and application of damage and rate-dependent constitutive model for SPCE steel |
remote_bool |
true |
author2 |
Yu, Yongtao Sun, Xiuxiu Sun, Jiangang Chen, Guang Li, Shubo |
author2Str |
Yu, Yongtao Sun, Xiuxiu Sun, Jiangang Chen, Guang Li, Shubo |
ppnlink |
306586339 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jcsr.2023.108174 |
up_date |
2024-07-06T20:52:53.985Z |
_version_ |
1803864426662592512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064823709</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230926130858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230926s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcsr.2023.108174</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064823709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0143-974X(23)00401-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jing, Guoxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calibration and application of damage and rate-dependent constitutive model for SPCE steel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The SPCE steel demonstrates favorable deep-drawing and forming properties, leading to its widespread use in industrial production. However, when subjected to complex loads, it becomes crucial to develop a constitutive model that accurately characterizes its mechanical properties. Such a model serves as the foundation for engineering design and safety assessment. Both quasi-static tension tests and high strain rate tension tests were conducted on SPCE steel samples using static and dynamic tension testing machines at room temperature. The resulting test data was used to introduce three dynamic increase factor indicators (DIFs) that quantify the strain rate effect on SPCE steels. Additionally, the fracture morphology of typical post-test specimens was analyzed using a scanning electron microscope (SEM) to demonstrate the strain rate effect on the mechanical properties of SPCE steels from a microscopic perspective, revealing ductile fracture as the primary fracture mechanism. A double-power plastic constitutive model was developed to describe the material's tensile mechanical behavior prior to necking. Simulation analysis was performed to validate the model, and the parameters of the Ductile damage model were identified based on the simulation data. The proposed constitutive model underwent numerical verification, demonstrating good consistency between the simulation and experimental results. Furthermore, the same constitutive model was applied to process the test data of HC650 steel using the same methodology. The conclusion drawn from this analysis aligned with that of SPCE steel, confirming the suitability of the proposed constitutive model for characterizing the mechanical behavior of steels without yielding a platform under different strain rates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPCE steel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effect of strain rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rate-dependent constitutive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determination of ductile damage parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation verification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yongtao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xiuxiu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jiangang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Guang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shubo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of constructional steel research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">211</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586339</subfield><subfield code="w">(DE-600)1498182-8</subfield><subfield code="w">(DE-576)098690671</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.13</subfield><subfield code="j">Stahlbau</subfield><subfield code="j">Metallbau</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">211</subfield></datafield></record></collection>
|
score |
7.401575 |