He atoms diffusion and aggregation in Li
Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction...
Ausführliche Beschreibung
Autor*in: |
Zhou, Liangfu [verfasserIn] He, Li [verfasserIn] Yang, Dongyan [verfasserIn] Li, Yuhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear engineering and design - Amsterdam [u.a.] : Elsevier Science, 1966, 413 |
---|---|
Übergeordnetes Werk: |
volume:413 |
DOI / URN: |
10.1016/j.nucengdes.2023.112567 |
---|
Katalog-ID: |
ELV064879496 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV064879496 | ||
003 | DE-627 | ||
005 | 20230928144055.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230928s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nucengdes.2023.112567 |2 doi | |
035 | |a (DE-627)ELV064879496 | ||
035 | |a (ELSEVIER)S0029-5493(23)00416-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Zhou, Liangfu |e verfasserin |4 aut | |
245 | 1 | 0 | |a He atoms diffusion and aggregation in Li |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. | ||
650 | 4 | |a Li | |
650 | 4 | |a Helium | |
650 | 4 | |a Diffusion and aggregation behavior | |
650 | 4 | |a Molecular dynamics simulation | |
700 | 1 | |a He, Li |e verfasserin |4 aut | |
700 | 1 | |a Yang, Dongyan |e verfasserin |4 aut | |
700 | 1 | |a Li, Yuhong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear engineering and design |d Amsterdam [u.a.] : Elsevier Science, 1966 |g 413 |h Online-Ressource |w (DE-627)320411087 |w (DE-600)2001319-X |w (DE-576)251938182 |x 0029-5493 |7 nnns |
773 | 1 | 8 | |g volume:413 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |q VZ |
951 | |a AR | ||
952 | |d 413 |
author_variant |
l z lz l h lh d y dy y l yl |
---|---|
matchkey_str |
article:00295493:2023----::etmdfuinnage |
hierarchy_sort_str |
2023 |
bklnumber |
52.55 |
publishDate |
2023 |
allfields |
10.1016/j.nucengdes.2023.112567 doi (DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 DE-627 ger DE-627 rda eng 620 VZ 52.55 bkl Zhou, Liangfu verfasserin aut He atoms diffusion and aggregation in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. Li Helium Diffusion and aggregation behavior Molecular dynamics simulation He, Li verfasserin aut Yang, Dongyan verfasserin aut Li, Yuhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 413 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:413 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.55 Kerntechnik Reaktortechnik VZ AR 413 |
spelling |
10.1016/j.nucengdes.2023.112567 doi (DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 DE-627 ger DE-627 rda eng 620 VZ 52.55 bkl Zhou, Liangfu verfasserin aut He atoms diffusion and aggregation in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. Li Helium Diffusion and aggregation behavior Molecular dynamics simulation He, Li verfasserin aut Yang, Dongyan verfasserin aut Li, Yuhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 413 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:413 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.55 Kerntechnik Reaktortechnik VZ AR 413 |
allfields_unstemmed |
10.1016/j.nucengdes.2023.112567 doi (DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 DE-627 ger DE-627 rda eng 620 VZ 52.55 bkl Zhou, Liangfu verfasserin aut He atoms diffusion and aggregation in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. Li Helium Diffusion and aggregation behavior Molecular dynamics simulation He, Li verfasserin aut Yang, Dongyan verfasserin aut Li, Yuhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 413 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:413 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.55 Kerntechnik Reaktortechnik VZ AR 413 |
allfieldsGer |
10.1016/j.nucengdes.2023.112567 doi (DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 DE-627 ger DE-627 rda eng 620 VZ 52.55 bkl Zhou, Liangfu verfasserin aut He atoms diffusion and aggregation in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. Li Helium Diffusion and aggregation behavior Molecular dynamics simulation He, Li verfasserin aut Yang, Dongyan verfasserin aut Li, Yuhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 413 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:413 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.55 Kerntechnik Reaktortechnik VZ AR 413 |
allfieldsSound |
10.1016/j.nucengdes.2023.112567 doi (DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 DE-627 ger DE-627 rda eng 620 VZ 52.55 bkl Zhou, Liangfu verfasserin aut He atoms diffusion and aggregation in Li 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. Li Helium Diffusion and aggregation behavior Molecular dynamics simulation He, Li verfasserin aut Yang, Dongyan verfasserin aut Li, Yuhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 413 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:413 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 52.55 Kerntechnik Reaktortechnik VZ AR 413 |
language |
English |
source |
Enthalten in Nuclear engineering and design 413 volume:413 |
sourceStr |
Enthalten in Nuclear engineering and design 413 volume:413 |
format_phy_str_mv |
Article |
bklname |
Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
Li Helium Diffusion and aggregation behavior Molecular dynamics simulation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Nuclear engineering and design |
authorswithroles_txt_mv |
Zhou, Liangfu @@aut@@ He, Li @@aut@@ Yang, Dongyan @@aut@@ Li, Yuhong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320411087 |
dewey-sort |
3620 |
id |
ELV064879496 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064879496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928144055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230928s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2023.112567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064879496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(23)00416-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Liangfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">He atoms diffusion and aggregation in Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion and aggregation behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Dongyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">413</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:413</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">413</subfield></datafield></record></collection>
|
author |
Zhou, Liangfu |
spellingShingle |
Zhou, Liangfu ddc 620 bkl 52.55 misc Li misc Helium misc Diffusion and aggregation behavior misc Molecular dynamics simulation He atoms diffusion and aggregation in Li |
authorStr |
Zhou, Liangfu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320411087 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-5493 |
topic_title |
620 VZ 52.55 bkl He atoms diffusion and aggregation in Li Li Helium Diffusion and aggregation behavior Molecular dynamics simulation |
topic |
ddc 620 bkl 52.55 misc Li misc Helium misc Diffusion and aggregation behavior misc Molecular dynamics simulation |
topic_unstemmed |
ddc 620 bkl 52.55 misc Li misc Helium misc Diffusion and aggregation behavior misc Molecular dynamics simulation |
topic_browse |
ddc 620 bkl 52.55 misc Li misc Helium misc Diffusion and aggregation behavior misc Molecular dynamics simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear engineering and design |
hierarchy_parent_id |
320411087 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Nuclear engineering and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 |
title |
He atoms diffusion and aggregation in Li |
ctrlnum |
(DE-627)ELV064879496 (ELSEVIER)S0029-5493(23)00416-8 |
title_full |
He atoms diffusion and aggregation in Li |
author_sort |
Zhou, Liangfu |
journal |
Nuclear engineering and design |
journalStr |
Nuclear engineering and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Liangfu He, Li Yang, Dongyan Li, Yuhong |
container_volume |
413 |
class |
620 VZ 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Liangfu |
doi_str_mv |
10.1016/j.nucengdes.2023.112567 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
he atoms diffusion and aggregation in li |
title_auth |
He atoms diffusion and aggregation in Li |
abstract |
Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. |
abstractGer |
Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. |
abstract_unstemmed |
Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
He atoms diffusion and aggregation in Li |
remote_bool |
true |
author2 |
He, Li Yang, Dongyan Li, Yuhong |
author2Str |
He, Li Yang, Dongyan Li, Yuhong |
ppnlink |
320411087 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nucengdes.2023.112567 |
up_date |
2024-07-06T21:03:44.443Z |
_version_ |
1803865108716191744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV064879496</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230928144055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230928s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2023.112567</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064879496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(23)00416-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Liangfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">He atoms diffusion and aggregation in Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advanced reactor projects will consider the utilization of Li2TiO3 as a potential material for neutron moderation and certain radiation shielding applications in fission reactors, as well as for tritium breeder blanket material in fusion reactors. He is one of the particles produced by the reaction of Li with neutrons during the service of Li2TiO3. The diffusion and aggregation of He in Li2TiO3 can cause embrittlement failure of Li2TiO3. Understanding the diffusion and aggregation behavior of helium in Li2TiO3 is crucial for evaluating service life, as well as for the selection and design of advanced nuclear reactor components. In this paper, the diffusion of He in Li2TiO3 and the nucleation behavior of a He cluster were studied by molecular dynamics simulations. The following results were mainly obtained: (1) The long-range diffusion activation energy of He atoms in Li2TiO3 is about 0.5 eV, and it varies significantly with the change of Li vacancy content. (2) He atoms tend to be distributed in the Li layers after sufficient diffusion in Li2TiO3, so the best nucleation site for He clusters in Li2TiO3 may be located in the Li layers. (3) After a He cluster reaches a certain size, it can trigger defects by extruding an O-LiTi2-O layer in its immediate vicinity on one side and migrating with the extruded O-LiTi2-O layer. (4) A He cluster can promote their own growth by releasing pressure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Li</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Helium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion and aggregation behavior</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Dongyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">413</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:413</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">413</subfield></datafield></record></collection>
|
score |
7.4008055 |