A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0
The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuc...
Ausführliche Beschreibung
Autor*in: |
Wang, Sicheng [verfasserIn] Li, Yunzhao [verfasserIn] Cao, Liangzhi [verfasserIn] Wu, Hongchun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of nuclear energy - Amsterdam [u.a.] : Elsevier Science, 1975, 194 |
---|---|
Übergeordnetes Werk: |
volume:194 |
DOI / URN: |
10.1016/j.anucene.2023.110088 |
---|
Katalog-ID: |
ELV064880869 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064880869 | ||
003 | DE-627 | ||
005 | 20231205153601.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230929s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.anucene.2023.110088 |2 doi | |
035 | |a (DE-627)ELV064880869 | ||
035 | |a (ELSEVIER)S0306-4549(23)00407-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Wang, Sicheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. | ||
650 | 4 | |a PWR | |
650 | 4 | |a Pin-by-pin scheme | |
650 | 4 | |a NECP-Bamboo2.0 | |
650 | 4 | |a History effect | |
650 | 4 | |a Cross-section correction | |
700 | 1 | |a Li, Yunzhao |e verfasserin |4 aut | |
700 | 1 | |a Cao, Liangzhi |e verfasserin |0 (orcid)0000-0002-2872-011X |4 aut | |
700 | 1 | |a Wu, Hongchun |e verfasserin |0 (orcid)0000-0002-6985-0519 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of nuclear energy |d Amsterdam [u.a.] : Elsevier Science, 1975 |g 194 |h Online-Ressource |w (DE-627)320406679 |w (DE-600)2000768-1 |w (DE-576)120883511 |x 0306-4549 |7 nnns |
773 | 1 | 8 | |g volume:194 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.00 |j Physik: Allgemeines |q VZ |
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |q VZ |
951 | |a AR | ||
952 | |d 194 |
author_variant |
s w sw y l yl l c lc h w hw |
---|---|
matchkey_str |
article:03064549:2023----::cosetocretomdlohsoyfetramnip |
hierarchy_sort_str |
2023 |
bklnumber |
33.00 52.55 |
publishDate |
2023 |
allfields |
10.1016/j.anucene.2023.110088 doi (DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Wang, Sicheng verfasserin aut A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction Li, Yunzhao verfasserin aut Cao, Liangzhi verfasserin (orcid)0000-0002-2872-011X aut Wu, Hongchun verfasserin (orcid)0000-0002-6985-0519 aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 194 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:194 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 194 |
spelling |
10.1016/j.anucene.2023.110088 doi (DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Wang, Sicheng verfasserin aut A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction Li, Yunzhao verfasserin aut Cao, Liangzhi verfasserin (orcid)0000-0002-2872-011X aut Wu, Hongchun verfasserin (orcid)0000-0002-6985-0519 aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 194 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:194 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 194 |
allfields_unstemmed |
10.1016/j.anucene.2023.110088 doi (DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Wang, Sicheng verfasserin aut A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction Li, Yunzhao verfasserin aut Cao, Liangzhi verfasserin (orcid)0000-0002-2872-011X aut Wu, Hongchun verfasserin (orcid)0000-0002-6985-0519 aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 194 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:194 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 194 |
allfieldsGer |
10.1016/j.anucene.2023.110088 doi (DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Wang, Sicheng verfasserin aut A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction Li, Yunzhao verfasserin aut Cao, Liangzhi verfasserin (orcid)0000-0002-2872-011X aut Wu, Hongchun verfasserin (orcid)0000-0002-6985-0519 aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 194 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:194 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 194 |
allfieldsSound |
10.1016/j.anucene.2023.110088 doi (DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 DE-627 ger DE-627 rda eng 530 VZ 33.00 bkl 52.55 bkl Wang, Sicheng verfasserin aut A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction Li, Yunzhao verfasserin aut Cao, Liangzhi verfasserin (orcid)0000-0002-2872-011X aut Wu, Hongchun verfasserin (orcid)0000-0002-6985-0519 aut Enthalten in Annals of nuclear energy Amsterdam [u.a.] : Elsevier Science, 1975 194 Online-Ressource (DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 0306-4549 nnns volume:194 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 Physik: Allgemeines VZ 52.55 Kerntechnik Reaktortechnik VZ AR 194 |
language |
English |
source |
Enthalten in Annals of nuclear energy 194 volume:194 |
sourceStr |
Enthalten in Annals of nuclear energy 194 volume:194 |
format_phy_str_mv |
Article |
bklname |
Physik: Allgemeines Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Annals of nuclear energy |
authorswithroles_txt_mv |
Wang, Sicheng @@aut@@ Li, Yunzhao @@aut@@ Cao, Liangzhi @@aut@@ Wu, Hongchun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320406679 |
dewey-sort |
3530 |
id |
ELV064880869 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064880869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230929s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2023.110088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064880869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(23)00407-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Sicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PWR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pin-by-pin scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NECP-Bamboo2.0</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-section correction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Liangzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2872-011X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hongchun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6985-0519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">194</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:194</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">194</subfield></datafield></record></collection>
|
author |
Wang, Sicheng |
spellingShingle |
Wang, Sicheng ddc 530 bkl 33.00 bkl 52.55 misc PWR misc Pin-by-pin scheme misc NECP-Bamboo2.0 misc History effect misc Cross-section correction A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
authorStr |
Wang, Sicheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320406679 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0306-4549 |
topic_title |
530 VZ 33.00 bkl 52.55 bkl A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 PWR Pin-by-pin scheme NECP-Bamboo2.0 History effect Cross-section correction |
topic |
ddc 530 bkl 33.00 bkl 52.55 misc PWR misc Pin-by-pin scheme misc NECP-Bamboo2.0 misc History effect misc Cross-section correction |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 52.55 misc PWR misc Pin-by-pin scheme misc NECP-Bamboo2.0 misc History effect misc Cross-section correction |
topic_browse |
ddc 530 bkl 33.00 bkl 52.55 misc PWR misc Pin-by-pin scheme misc NECP-Bamboo2.0 misc History effect misc Cross-section correction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of nuclear energy |
hierarchy_parent_id |
320406679 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Annals of nuclear energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320406679 (DE-600)2000768-1 (DE-576)120883511 |
title |
A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
ctrlnum |
(DE-627)ELV064880869 (ELSEVIER)S0306-4549(23)00407-3 |
title_full |
A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
author_sort |
Wang, Sicheng |
journal |
Annals of nuclear energy |
journalStr |
Annals of nuclear energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Sicheng Li, Yunzhao Cao, Liangzhi Wu, Hongchun |
container_volume |
194 |
class |
530 VZ 33.00 bkl 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Sicheng |
doi_str_mv |
10.1016/j.anucene.2023.110088 |
normlink |
(ORCID)0000-0002-2872-011X (ORCID)0000-0002-6985-0519 |
normlink_prefix_str_mv |
(orcid)0000-0002-2872-011X (orcid)0000-0002-6985-0519 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
a cross-section correction model for history effect treatment in pin-by-pin code necp-bamboo2.0 |
title_auth |
A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
abstract |
The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. |
abstractGer |
The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. |
abstract_unstemmed |
The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0 |
remote_bool |
true |
author2 |
Li, Yunzhao Cao, Liangzhi Wu, Hongchun |
author2Str |
Li, Yunzhao Cao, Liangzhi Wu, Hongchun |
ppnlink |
320406679 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.anucene.2023.110088 |
up_date |
2024-07-06T21:04:01.093Z |
_version_ |
1803865126176030720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064880869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230929s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.anucene.2023.110088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064880869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0306-4549(23)00407-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Sicheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A cross-section correction model for history effect treatment in pin-by-pin code NECP-Bamboo2.0</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The consideration of the history effect is one of the foundations for ensuring the precision of the two-step calculation scheme. Since the actual condition could not be predicted in advance, the standard approach of the lattice calculation adopts the branch-based model in which the variations of nuclide number densities with burnup are only considered in averaged operating conditions. Consequently, the nuclide number densities associated with actual operating conditions are not considered properly in the 3D whole-core calculation, and the problem of the history effect arises then. The microscopic depletion method and serval correction methods based on different lattice calculation structures were developed to solve this problem and have been employed in pin-by-pin two-step calculation codes. This paper introduces a new spectral history correction method with the implementation of a new bidirectional branch model, a pin-cell burnup correction model, and a multiscale cross-section correction model. The work was carried out based on the pin-by-pin fuel management calculation code system NECP-Bamboo2.0 developed by Xi'an Jiaotong University. Encouraging conclusions have been obtained from the numerical results. For the heterogeneous history effect caused by CR movement, the bias of k eff given by the classical corrections will exceed ± 1000pcm. In contrast, the improved method can reduce it to be smaller than ± 250pcm. For the histories triggered by the changes of other state parameters, including boron concentration, fuel, and/or moderator temperature(s), the new cross-section correction method is comparable in accuracy to the traditional microscopic cross-section correction method, both better than the microscopic depletion correction method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PWR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pin-by-pin scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NECP-Bamboo2.0</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-section correction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yunzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Liangzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2872-011X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hongchun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6985-0519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of nuclear energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1975</subfield><subfield code="g">194</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320406679</subfield><subfield code="w">(DE-600)2000768-1</subfield><subfield code="w">(DE-576)120883511</subfield><subfield code="x">0306-4549</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:194</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="j">Physik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">194</subfield></datafield></record></collection>
|
score |
7.400402 |