Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models
Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the rea...
Ausführliche Beschreibung
Autor*in: |
Nikhil Teja, Kalakuntla [verfasserIn] Manikanta, Velpuri [verfasserIn] Das, Jew [verfasserIn] Umamahesh, N.V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hydrology - Amsterdam [u.a.] : Elsevier, 1963, 625 |
---|---|
Übergeordnetes Werk: |
volume:625 |
DOI / URN: |
10.1016/j.jhydrol.2023.130176 |
---|
Katalog-ID: |
ELV064885054 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064885054 | ||
003 | DE-627 | ||
005 | 20231205153601.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230929s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhydrol.2023.130176 |2 doi | |
035 | |a (DE-627)ELV064885054 | ||
035 | |a (ELSEVIER)S0022-1694(23)01118-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Nikhil Teja, Kalakuntla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. | ||
650 | 4 | |a Ensemble Prediction Systems | |
650 | 4 | |a Grand Ensemble | |
650 | 4 | |a Post-processing | |
650 | 4 | |a Multiple Hydrologic models | |
650 | 4 | |a Ensemble flood forecasting | |
650 | 4 | |a Verification | |
700 | 1 | |a Manikanta, Velpuri |e verfasserin |4 aut | |
700 | 1 | |a Das, Jew |e verfasserin |0 (orcid)0000-0002-0728-7708 |4 aut | |
700 | 1 | |a Umamahesh, N.V. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hydrology |d Amsterdam [u.a.] : Elsevier, 1963 |g 625 |h Online-Ressource |w (DE-627)268761817 |w (DE-600)1473173-3 |w (DE-576)077610628 |x 1879-2707 |7 nnns |
773 | 1 | 8 | |g volume:625 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 625 |
author_variant |
t k n tk tkn v m vm j d jd n u nu |
---|---|
matchkey_str |
article:18792707:2023----::nacnterdcaiiyflofrcssyobnnnmrcletepeitoesml |
hierarchy_sort_str |
2023 |
bklnumber |
38.85 |
publishDate |
2023 |
allfields |
10.1016/j.jhydrol.2023.130176 doi (DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Nikhil Teja, Kalakuntla verfasserin aut Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification Manikanta, Velpuri verfasserin aut Das, Jew verfasserin (orcid)0000-0002-0728-7708 aut Umamahesh, N.V. verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 625 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:625 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 625 |
spelling |
10.1016/j.jhydrol.2023.130176 doi (DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Nikhil Teja, Kalakuntla verfasserin aut Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification Manikanta, Velpuri verfasserin aut Das, Jew verfasserin (orcid)0000-0002-0728-7708 aut Umamahesh, N.V. verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 625 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:625 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 625 |
allfields_unstemmed |
10.1016/j.jhydrol.2023.130176 doi (DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Nikhil Teja, Kalakuntla verfasserin aut Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification Manikanta, Velpuri verfasserin aut Das, Jew verfasserin (orcid)0000-0002-0728-7708 aut Umamahesh, N.V. verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 625 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:625 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 625 |
allfieldsGer |
10.1016/j.jhydrol.2023.130176 doi (DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Nikhil Teja, Kalakuntla verfasserin aut Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification Manikanta, Velpuri verfasserin aut Das, Jew verfasserin (orcid)0000-0002-0728-7708 aut Umamahesh, N.V. verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 625 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:625 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 625 |
allfieldsSound |
10.1016/j.jhydrol.2023.130176 doi (DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 DE-627 ger DE-627 rda eng 690 VZ 38.85 bkl Nikhil Teja, Kalakuntla verfasserin aut Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification Manikanta, Velpuri verfasserin aut Das, Jew verfasserin (orcid)0000-0002-0728-7708 aut Umamahesh, N.V. verfasserin aut Enthalten in Journal of hydrology Amsterdam [u.a.] : Elsevier, 1963 625 Online-Ressource (DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 1879-2707 nnns volume:625 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.85 Hydrologie: Allgemeines VZ AR 625 |
language |
English |
source |
Enthalten in Journal of hydrology 625 volume:625 |
sourceStr |
Enthalten in Journal of hydrology 625 volume:625 |
format_phy_str_mv |
Article |
bklname |
Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Journal of hydrology |
authorswithroles_txt_mv |
Nikhil Teja, Kalakuntla @@aut@@ Manikanta, Velpuri @@aut@@ Das, Jew @@aut@@ Umamahesh, N.V. @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
268761817 |
dewey-sort |
3690 |
id |
ELV064885054 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064885054</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230929s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.130176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064885054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)01118-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikhil Teja, Kalakuntla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble Prediction Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grand Ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple Hydrologic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble flood forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manikanta, Velpuri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Jew</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0728-7708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Umamahesh, N.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">625</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:625</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">625</subfield></datafield></record></collection>
|
author |
Nikhil Teja, Kalakuntla |
spellingShingle |
Nikhil Teja, Kalakuntla ddc 690 bkl 38.85 misc Ensemble Prediction Systems misc Grand Ensemble misc Post-processing misc Multiple Hydrologic models misc Ensemble flood forecasting misc Verification Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
authorStr |
Nikhil Teja, Kalakuntla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268761817 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2707 |
topic_title |
690 VZ 38.85 bkl Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models Ensemble Prediction Systems Grand Ensemble Post-processing Multiple Hydrologic models Ensemble flood forecasting Verification |
topic |
ddc 690 bkl 38.85 misc Ensemble Prediction Systems misc Grand Ensemble misc Post-processing misc Multiple Hydrologic models misc Ensemble flood forecasting misc Verification |
topic_unstemmed |
ddc 690 bkl 38.85 misc Ensemble Prediction Systems misc Grand Ensemble misc Post-processing misc Multiple Hydrologic models misc Ensemble flood forecasting misc Verification |
topic_browse |
ddc 690 bkl 38.85 misc Ensemble Prediction Systems misc Grand Ensemble misc Post-processing misc Multiple Hydrologic models misc Ensemble flood forecasting misc Verification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hydrology |
hierarchy_parent_id |
268761817 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Journal of hydrology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268761817 (DE-600)1473173-3 (DE-576)077610628 |
title |
Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
ctrlnum |
(DE-627)ELV064885054 (ELSEVIER)S0022-1694(23)01118-6 |
title_full |
Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
author_sort |
Nikhil Teja, Kalakuntla |
journal |
Journal of hydrology |
journalStr |
Journal of hydrology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Nikhil Teja, Kalakuntla Manikanta, Velpuri Das, Jew Umamahesh, N.V. |
container_volume |
625 |
class |
690 VZ 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nikhil Teja, Kalakuntla |
doi_str_mv |
10.1016/j.jhydrol.2023.130176 |
normlink |
(ORCID)0000-0002-0728-7708 |
normlink_prefix_str_mv |
(orcid)0000-0002-0728-7708 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
enhancing the predictability of flood forecasts by combining numerical weather prediction ensembles with multiple hydrological models |
title_auth |
Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
abstract |
Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. |
abstractGer |
Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. |
abstract_unstemmed |
Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models |
remote_bool |
true |
author2 |
Manikanta, Velpuri Das, Jew Umamahesh, N.V. |
author2Str |
Manikanta, Velpuri Das, Jew Umamahesh, N.V. |
ppnlink |
268761817 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhydrol.2023.130176 |
up_date |
2024-07-06T21:04:52.145Z |
_version_ |
1803865179707932672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064885054</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230929s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhydrol.2023.130176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064885054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1694(23)01118-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikhil Teja, Kalakuntla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ensemble Prediction Systems (EPS) from a single Numerical Weather Prediction (NWP) model often miss out on a few extreme events. Similarly, a single hydrological model cannot capture all types of flows, such as flood peaks, occurring within a watershed due to the inaccurate representation of the real world processes in their mathematical structure. To focus on these aspects, this study proposes five ‘NWP+HM’ combinations (HM refers to Hydrologic Model) to investigate which combination performs better in providing quality flood forecasts. The EPS obtained from THORPEX Interactive Grand Global Ensemble (TIGGE) archive are forced into calibrated hydrologic models to generate ensemble flood forecasts (EFFs). The methodology also includes a machine-learning post-processing technique, Quantile Regression Forests (QRF), for temporal correction of bias and under-dispersion in the raw EPS data. The study finds that both the EPS used show similar performance in generating flood forecasts. However, the study demonstrates that the hydrologic model uncertainty has a more significant impact on capturing flood peaks compared to input model uncertainty. Finally, the simulated flood forecasts are verified for their quality using both deterministic and probabilistic metrics. For the above five combinations, an increase in leadtime up to 10 days is observed when the raw data are post-processed using QRF technique. The study identifies a computationally efficient ‘NWP+HM’ combination for use in the hydrological forecasting system, which improves the predictability of flood forecasts several days ahead.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble Prediction Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grand Ensemble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple Hydrologic models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ensemble flood forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verification</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manikanta, Velpuri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, Jew</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0728-7708</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Umamahesh, N.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hydrology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1963</subfield><subfield code="g">625</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268761817</subfield><subfield code="w">(DE-600)1473173-3</subfield><subfield code="w">(DE-576)077610628</subfield><subfield code="x">1879-2707</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:625</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">625</subfield></datafield></record></collection>
|
score |
7.3994074 |