An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors
Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical a...
Ausführliche Beschreibung
Autor*in: |
Ruan, Shuai [verfasserIn] Xin, Wenjie [verfasserIn] Wang, Chen [verfasserIn] Wan, Wangjun [verfasserIn] Huang, Hui [verfasserIn] Gan, Yongping [verfasserIn] Xia, Yang [verfasserIn] Zhang, Jun [verfasserIn] Xia, Xinhui [verfasserIn] He, Xinping [verfasserIn] Zhang, Wenkui [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of colloid and interface science - Amsterdam [u.a.] : Elsevier, 1966, 652, Seite 1063-1073 |
---|---|
Übergeordnetes Werk: |
volume:652 ; pages:1063-1073 |
DOI / URN: |
10.1016/j.jcis.2023.08.053 |
---|
Katalog-ID: |
ELV064901297 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV064901297 | ||
003 | DE-627 | ||
005 | 20240126093129.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230930s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcis.2023.08.053 |2 doi | |
035 | |a (DE-627)ELV064901297 | ||
035 | |a (ELSEVIER)S0021-9797(23)01522-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 35.18 |2 bkl | ||
100 | 1 | |a Ruan, Shuai |e verfasserin |4 aut | |
245 | 1 | 0 | |a An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. | ||
650 | 4 | |a Lithium-ion supercapacitor | |
650 | 4 | |a Supercritical fluid technology | |
650 | 4 | |a Flexible electrode | |
650 | 4 | |a Conducting polymer | |
650 | 4 | |a Carbon foam | |
700 | 1 | |a Xin, Wenjie |e verfasserin |4 aut | |
700 | 1 | |a Wang, Chen |e verfasserin |4 aut | |
700 | 1 | |a Wan, Wangjun |e verfasserin |4 aut | |
700 | 1 | |a Huang, Hui |e verfasserin |4 aut | |
700 | 1 | |a Gan, Yongping |e verfasserin |4 aut | |
700 | 1 | |a Xia, Yang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jun |e verfasserin |4 aut | |
700 | 1 | |a Xia, Xinhui |e verfasserin |4 aut | |
700 | 1 | |a He, Xinping |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Wenkui |e verfasserin |0 (orcid)0000-0002-6416-6275 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of colloid and interface science |d Amsterdam [u.a.] : Elsevier, 1966 |g 652, Seite 1063-1073 |h Online-Ressource |w (DE-627)266891136 |w (DE-600)1469021-4 |w (DE-576)103373160 |x 1095-7103 |7 nnns |
773 | 1 | 8 | |g volume:652 |g pages:1063-1073 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |q VZ |
951 | |a AR | ||
952 | |d 652 |h 1063-1073 |
author_variant |
s r sr w x wx c w cw w w ww h h hh y g yg y x yx j z jz x x xx x h xh w z wz |
---|---|
matchkey_str |
article:10957103:2023----::nprahonaccroplmrnefccmaiiiyolt |
hierarchy_sort_str |
2023 |
bklnumber |
35.18 |
publishDate |
2023 |
allfields |
10.1016/j.jcis.2023.08.053 doi (DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 DE-627 ger DE-627 rda eng 540 VZ 35.18 bkl Ruan, Shuai verfasserin aut An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam Xin, Wenjie verfasserin aut Wang, Chen verfasserin aut Wan, Wangjun verfasserin aut Huang, Hui verfasserin aut Gan, Yongping verfasserin aut Xia, Yang verfasserin aut Zhang, Jun verfasserin aut Xia, Xinhui verfasserin aut He, Xinping verfasserin aut Zhang, Wenkui verfasserin (orcid)0000-0002-6416-6275 aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 652, Seite 1063-1073 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:652 pages:1063-1073 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.18 Kolloidchemie Grenzflächenchemie VZ AR 652 1063-1073 |
spelling |
10.1016/j.jcis.2023.08.053 doi (DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 DE-627 ger DE-627 rda eng 540 VZ 35.18 bkl Ruan, Shuai verfasserin aut An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam Xin, Wenjie verfasserin aut Wang, Chen verfasserin aut Wan, Wangjun verfasserin aut Huang, Hui verfasserin aut Gan, Yongping verfasserin aut Xia, Yang verfasserin aut Zhang, Jun verfasserin aut Xia, Xinhui verfasserin aut He, Xinping verfasserin aut Zhang, Wenkui verfasserin (orcid)0000-0002-6416-6275 aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 652, Seite 1063-1073 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:652 pages:1063-1073 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.18 Kolloidchemie Grenzflächenchemie VZ AR 652 1063-1073 |
allfields_unstemmed |
10.1016/j.jcis.2023.08.053 doi (DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 DE-627 ger DE-627 rda eng 540 VZ 35.18 bkl Ruan, Shuai verfasserin aut An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam Xin, Wenjie verfasserin aut Wang, Chen verfasserin aut Wan, Wangjun verfasserin aut Huang, Hui verfasserin aut Gan, Yongping verfasserin aut Xia, Yang verfasserin aut Zhang, Jun verfasserin aut Xia, Xinhui verfasserin aut He, Xinping verfasserin aut Zhang, Wenkui verfasserin (orcid)0000-0002-6416-6275 aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 652, Seite 1063-1073 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:652 pages:1063-1073 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.18 Kolloidchemie Grenzflächenchemie VZ AR 652 1063-1073 |
allfieldsGer |
10.1016/j.jcis.2023.08.053 doi (DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 DE-627 ger DE-627 rda eng 540 VZ 35.18 bkl Ruan, Shuai verfasserin aut An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam Xin, Wenjie verfasserin aut Wang, Chen verfasserin aut Wan, Wangjun verfasserin aut Huang, Hui verfasserin aut Gan, Yongping verfasserin aut Xia, Yang verfasserin aut Zhang, Jun verfasserin aut Xia, Xinhui verfasserin aut He, Xinping verfasserin aut Zhang, Wenkui verfasserin (orcid)0000-0002-6416-6275 aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 652, Seite 1063-1073 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:652 pages:1063-1073 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.18 Kolloidchemie Grenzflächenchemie VZ AR 652 1063-1073 |
allfieldsSound |
10.1016/j.jcis.2023.08.053 doi (DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 DE-627 ger DE-627 rda eng 540 VZ 35.18 bkl Ruan, Shuai verfasserin aut An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam Xin, Wenjie verfasserin aut Wang, Chen verfasserin aut Wan, Wangjun verfasserin aut Huang, Hui verfasserin aut Gan, Yongping verfasserin aut Xia, Yang verfasserin aut Zhang, Jun verfasserin aut Xia, Xinhui verfasserin aut He, Xinping verfasserin aut Zhang, Wenkui verfasserin (orcid)0000-0002-6416-6275 aut Enthalten in Journal of colloid and interface science Amsterdam [u.a.] : Elsevier, 1966 652, Seite 1063-1073 Online-Ressource (DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 1095-7103 nnns volume:652 pages:1063-1073 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 35.18 Kolloidchemie Grenzflächenchemie VZ AR 652 1063-1073 |
language |
English |
source |
Enthalten in Journal of colloid and interface science 652, Seite 1063-1073 volume:652 pages:1063-1073 |
sourceStr |
Enthalten in Journal of colloid and interface science 652, Seite 1063-1073 volume:652 pages:1063-1073 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie |
institution |
findex.gbv.de |
topic_facet |
Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of colloid and interface science |
authorswithroles_txt_mv |
Ruan, Shuai @@aut@@ Xin, Wenjie @@aut@@ Wang, Chen @@aut@@ Wan, Wangjun @@aut@@ Huang, Hui @@aut@@ Gan, Yongping @@aut@@ Xia, Yang @@aut@@ Zhang, Jun @@aut@@ Xia, Xinhui @@aut@@ He, Xinping @@aut@@ Zhang, Wenkui @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
266891136 |
dewey-sort |
3540 |
id |
ELV064901297 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064901297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240126093129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230930s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcis.2023.08.053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064901297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9797(23)01522-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruan, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium-ion supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical fluid technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conducting polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon foam</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Wangjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Yongping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Xinhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xinping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenkui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6416-6275</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of colloid and interface science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">652, Seite 1063-1073</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266891136</subfield><subfield code="w">(DE-600)1469021-4</subfield><subfield code="w">(DE-576)103373160</subfield><subfield code="x">1095-7103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:652</subfield><subfield code="g">pages:1063-1073</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">652</subfield><subfield code="h">1063-1073</subfield></datafield></record></collection>
|
author |
Ruan, Shuai |
spellingShingle |
Ruan, Shuai ddc 540 bkl 35.18 misc Lithium-ion supercapacitor misc Supercritical fluid technology misc Flexible electrode misc Conducting polymer misc Carbon foam An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
authorStr |
Ruan, Shuai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266891136 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1095-7103 |
topic_title |
540 VZ 35.18 bkl An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors Lithium-ion supercapacitor Supercritical fluid technology Flexible electrode Conducting polymer Carbon foam |
topic |
ddc 540 bkl 35.18 misc Lithium-ion supercapacitor misc Supercritical fluid technology misc Flexible electrode misc Conducting polymer misc Carbon foam |
topic_unstemmed |
ddc 540 bkl 35.18 misc Lithium-ion supercapacitor misc Supercritical fluid technology misc Flexible electrode misc Conducting polymer misc Carbon foam |
topic_browse |
ddc 540 bkl 35.18 misc Lithium-ion supercapacitor misc Supercritical fluid technology misc Flexible electrode misc Conducting polymer misc Carbon foam |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of colloid and interface science |
hierarchy_parent_id |
266891136 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of colloid and interface science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266891136 (DE-600)1469021-4 (DE-576)103373160 |
title |
An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
ctrlnum |
(DE-627)ELV064901297 (ELSEVIER)S0021-9797(23)01522-9 |
title_full |
An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
author_sort |
Ruan, Shuai |
journal |
Journal of colloid and interface science |
journalStr |
Journal of colloid and interface science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
1063 |
author_browse |
Ruan, Shuai Xin, Wenjie Wang, Chen Wan, Wangjun Huang, Hui Gan, Yongping Xia, Yang Zhang, Jun Xia, Xinhui He, Xinping Zhang, Wenkui |
container_volume |
652 |
class |
540 VZ 35.18 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ruan, Shuai |
doi_str_mv |
10.1016/j.jcis.2023.08.053 |
normlink |
(ORCID)0000-0002-6416-6275 |
normlink_prefix_str_mv |
(orcid)0000-0002-6416-6275 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
an approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
title_auth |
An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
abstract |
Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. |
abstractGer |
Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. |
abstract_unstemmed |
Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors |
remote_bool |
true |
author2 |
Xin, Wenjie Wang, Chen Wan, Wangjun Huang, Hui Gan, Yongping Xia, Yang Zhang, Jun Xia, Xinhui He, Xinping Zhang, Wenkui |
author2Str |
Xin, Wenjie Wang, Chen Wan, Wangjun Huang, Hui Gan, Yongping Xia, Yang Zhang, Jun Xia, Xinhui He, Xinping Zhang, Wenkui |
ppnlink |
266891136 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jcis.2023.08.053 |
up_date |
2024-07-06T21:08:20.208Z |
_version_ |
1803865397877800960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV064901297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240126093129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230930s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcis.2023.08.053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV064901297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0021-9797(23)01522-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruan, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Developing high-efficiency and easy machining components, as well as high-performance energy storage components, is a pressing issue on the road to economic and social progress. Optimizing the interface compatibility between composites and promoting the efficient utilization of the electrochemical active sites are crucial factors in improving the electrochemical performance of composite electrode materials. To address this challenge, a carbon-based flexible lithium-ion supercapacitor positive material (Polyaniline Carbon Foam-Supercritical carbon dioxide (P@C-SC)) is synthesized using commercial melamine foam and aniline monomer. The synthesis process utilizes supercritical fluid technology, effectively solving the interface compatibility problem between the composite materials. Consequently, the electrochemical performance of the composite electrode materials is significantly improved. The supercapacitive properties of this material are investigated in 1 mol/L sulfuric acid (H2SO4) and lithium sulfate (Li2SO4) electrolytes using a three-electrode system. In H2SO4 electrolyte, the material exhibits a working voltage of up to 2.2 V and a specific capacitance of 898F/g (at 1 A/g), resulting in a maximum energy density of 50.8 Wh kg−1. Furthermore, this electrode demonstrates superior lithium storage performance, with a specific capacity of approximately 900 mAh/g (at 1 A/g) and a retention of about 400 mAh/g after 200 cycles, along with a coulomb efficiency of 100%. This work offers insights into the integrated design of composite materials with improved electrochemical properties and interface compatibility, thus providing potential applicability of supercritical fluids in the field of lithium-ion supercapacitors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium-ion supercapacitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical fluid technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible electrode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conducting polymer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon foam</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xin, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Wangjun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Yongping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Xinhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xinping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenkui</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6416-6275</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of colloid and interface science</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1966</subfield><subfield code="g">652, Seite 1063-1073</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266891136</subfield><subfield code="w">(DE-600)1469021-4</subfield><subfield code="w">(DE-576)103373160</subfield><subfield code="x">1095-7103</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:652</subfield><subfield code="g">pages:1063-1073</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">652</subfield><subfield code="h">1063-1073</subfield></datafield></record></collection>
|
score |
7.4019165 |