Torque calculation method for axial-flux electrical machines in finite element analysis
Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to cal...
Ausführliche Beschreibung
Autor*in: |
Silveyra, Josefina María [verfasserIn] Conde Garrido, Juan Manuel [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Finite elements in analysis and design - Amsterdam : North-Holland, 1985, 227 |
---|---|
Übergeordnetes Werk: |
volume:227 |
DOI / URN: |
10.1016/j.finel.2023.104042 |
---|
Katalog-ID: |
ELV06497071X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV06497071X | ||
003 | DE-627 | ||
005 | 20231009073106.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231005s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.finel.2023.104042 |2 doi | |
035 | |a (DE-627)ELV06497071X | ||
035 | |a (ELSEVIER)S0168-874X(23)00135-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 600 |q VZ |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Silveyra, Josefina María |e verfasserin |0 (orcid)0000-0003-0307-3419 |4 aut | |
245 | 1 | 0 | |a Torque calculation method for axial-flux electrical machines in finite element analysis |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. | ||
650 | 4 | |a Arkkio | |
650 | 4 | |a Axial-flux | |
650 | 4 | |a Electric motor | |
650 | 4 | |a Finite element | |
650 | 4 | |a Maxwell stress tensor | |
650 | 4 | |a Torque | |
700 | 1 | |a Conde Garrido, Juan Manuel |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Finite elements in analysis and design |d Amsterdam : North-Holland, 1985 |g 227 |h Online-Ressource |w (DE-627)319509028 |w (DE-600)2019309-9 |w (DE-576)096188766 |x 0168-874x |7 nnns |
773 | 1 | 8 | |g volume:227 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.03 |j Methoden und Techniken der Ingenieurwissenschaften |q VZ |
951 | |a AR | ||
952 | |d 227 |
author_variant |
j m s jm jms g j m c gjm gjmc |
---|---|
matchkey_str |
article:0168874x:2023----::oqeacltomtofrxafueetiamcieif |
hierarchy_sort_str |
2023 |
bklnumber |
50.03 |
publishDate |
2023 |
allfields |
10.1016/j.finel.2023.104042 doi (DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Silveyra, Josefina María verfasserin (orcid)0000-0003-0307-3419 aut Torque calculation method for axial-flux electrical machines in finite element analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque Conde Garrido, Juan Manuel verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 227 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:227 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 227 |
spelling |
10.1016/j.finel.2023.104042 doi (DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Silveyra, Josefina María verfasserin (orcid)0000-0003-0307-3419 aut Torque calculation method for axial-flux electrical machines in finite element analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque Conde Garrido, Juan Manuel verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 227 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:227 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 227 |
allfields_unstemmed |
10.1016/j.finel.2023.104042 doi (DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Silveyra, Josefina María verfasserin (orcid)0000-0003-0307-3419 aut Torque calculation method for axial-flux electrical machines in finite element analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque Conde Garrido, Juan Manuel verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 227 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:227 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 227 |
allfieldsGer |
10.1016/j.finel.2023.104042 doi (DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Silveyra, Josefina María verfasserin (orcid)0000-0003-0307-3419 aut Torque calculation method for axial-flux electrical machines in finite element analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque Conde Garrido, Juan Manuel verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 227 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:227 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 227 |
allfieldsSound |
10.1016/j.finel.2023.104042 doi (DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X DE-627 ger DE-627 rda eng 510 600 VZ 50.03 bkl Silveyra, Josefina María verfasserin (orcid)0000-0003-0307-3419 aut Torque calculation method for axial-flux electrical machines in finite element analysis 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque Conde Garrido, Juan Manuel verfasserin aut Enthalten in Finite elements in analysis and design Amsterdam : North-Holland, 1985 227 Online-Ressource (DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 0168-874x nnns volume:227 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.03 Methoden und Techniken der Ingenieurwissenschaften VZ AR 227 |
language |
English |
source |
Enthalten in Finite elements in analysis and design 227 volume:227 |
sourceStr |
Enthalten in Finite elements in analysis and design 227 volume:227 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Ingenieurwissenschaften |
institution |
findex.gbv.de |
topic_facet |
Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Finite elements in analysis and design |
authorswithroles_txt_mv |
Silveyra, Josefina María @@aut@@ Conde Garrido, Juan Manuel @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
319509028 |
dewey-sort |
3510 |
id |
ELV06497071X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06497071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231009073106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231005s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.finel.2023.104042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06497071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-874X(23)00135-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silveyra, Josefina María</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0307-3419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torque calculation method for axial-flux electrical machines in finite element analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arkkio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axial-flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric motor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Conde Garrido, Juan Manuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Finite elements in analysis and design</subfield><subfield code="d">Amsterdam : North-Holland, 1985</subfield><subfield code="g">227</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319509028</subfield><subfield code="w">(DE-600)2019309-9</subfield><subfield code="w">(DE-576)096188766</subfield><subfield code="x">0168-874x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield></datafield></record></collection>
|
author |
Silveyra, Josefina María |
spellingShingle |
Silveyra, Josefina María ddc 510 bkl 50.03 misc Arkkio misc Axial-flux misc Electric motor misc Finite element misc Maxwell stress tensor misc Torque Torque calculation method for axial-flux electrical machines in finite element analysis |
authorStr |
Silveyra, Josefina María |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319509028 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0168-874x |
topic_title |
510 600 VZ 50.03 bkl Torque calculation method for axial-flux electrical machines in finite element analysis Arkkio Axial-flux Electric motor Finite element Maxwell stress tensor Torque |
topic |
ddc 510 bkl 50.03 misc Arkkio misc Axial-flux misc Electric motor misc Finite element misc Maxwell stress tensor misc Torque |
topic_unstemmed |
ddc 510 bkl 50.03 misc Arkkio misc Axial-flux misc Electric motor misc Finite element misc Maxwell stress tensor misc Torque |
topic_browse |
ddc 510 bkl 50.03 misc Arkkio misc Axial-flux misc Electric motor misc Finite element misc Maxwell stress tensor misc Torque |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Finite elements in analysis and design |
hierarchy_parent_id |
319509028 |
dewey-tens |
510 - Mathematics 600 - Technology |
hierarchy_top_title |
Finite elements in analysis and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)319509028 (DE-600)2019309-9 (DE-576)096188766 |
title |
Torque calculation method for axial-flux electrical machines in finite element analysis |
ctrlnum |
(DE-627)ELV06497071X (ELSEVIER)S0168-874X(23)00135-X |
title_full |
Torque calculation method for axial-flux electrical machines in finite element analysis |
author_sort |
Silveyra, Josefina María |
journal |
Finite elements in analysis and design |
journalStr |
Finite elements in analysis and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Silveyra, Josefina María Conde Garrido, Juan Manuel |
container_volume |
227 |
class |
510 600 VZ 50.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Silveyra, Josefina María |
doi_str_mv |
10.1016/j.finel.2023.104042 |
normlink |
(ORCID)0000-0003-0307-3419 |
normlink_prefix_str_mv |
(orcid)0000-0003-0307-3419 |
dewey-full |
510 600 |
author2-role |
verfasserin |
title_sort |
torque calculation method for axial-flux electrical machines in finite element analysis |
title_auth |
Torque calculation method for axial-flux electrical machines in finite element analysis |
abstract |
Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. |
abstractGer |
Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. |
abstract_unstemmed |
Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Torque calculation method for axial-flux electrical machines in finite element analysis |
remote_bool |
true |
author2 |
Conde Garrido, Juan Manuel |
author2Str |
Conde Garrido, Juan Manuel |
ppnlink |
319509028 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.finel.2023.104042 |
up_date |
2024-07-06T21:22:11.020Z |
_version_ |
1803866269047324672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV06497071X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231009073106.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231005s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.finel.2023.104042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV06497071X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-874X(23)00135-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silveyra, Josefina María</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0307-3419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Torque calculation method for axial-flux electrical machines in finite element analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Rotating electrical machines are becoming ubiquitous as we move towards a more electrified and sustainable world. Torque calculation is an essential task in the design process of rotating machines. In the frame of finite element analysis, the Maxwell stress tensor method is a common technique to calculate the torque exerted on a rigid body. However, the computed torque is strongly mesh-dependent and can be inaccurate. The popular Arkkio method can overcome this problem. But Arkkio's formulation can only calculate the axial torque of conventional radial-flux electrical machines and is unsuitable for axial-flux motors and generators, which are attracting increasing interest due to the power density and efficiency improvements that the axial topology can enable. This article presents an easy-to-implement formulation for calculating the axial torque of axial-flux machines in finite element analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arkkio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axial-flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric motor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maxwell stress tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Conde Garrido, Juan Manuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Finite elements in analysis and design</subfield><subfield code="d">Amsterdam : North-Holland, 1985</subfield><subfield code="g">227</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)319509028</subfield><subfield code="w">(DE-600)2019309-9</subfield><subfield code="w">(DE-576)096188766</subfield><subfield code="x">0168-874x</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="j">Methoden und Techniken der Ingenieurwissenschaften</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield></datafield></record></collection>
|
score |
7.4028378 |