MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction
The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such...
Ausführliche Beschreibung
Autor*in: |
Li, Yuhao [verfasserIn] Zou, Xianghong [verfasserIn] Li, Tian [verfasserIn] Sun, Sihan [verfasserIn] Wang, Yuan [verfasserIn] Liang, Fuxun [verfasserIn] Li, Jiangping [verfasserIn] Yang, Bisheng [verfasserIn] Dong, Zhen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Mobile laser scanning point cloud |
---|
Übergeordnetes Werk: |
Enthalten in: ISPRS journal of photogrammetry and remote sensing - International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7, Amsterdam [u.a.] : Elsevier, 1989, 204, Seite 421-441 |
---|---|
Übergeordnetes Werk: |
volume:204 ; pages:421-441 |
DOI / URN: |
10.1016/j.isprsjprs.2023.09.018 |
---|
Katalog-ID: |
ELV065061195 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065061195 | ||
003 | DE-627 | ||
005 | 20231121093114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231011s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isprsjprs.2023.09.018 |2 doi | |
035 | |a (DE-627)ELV065061195 | ||
035 | |a (ELSEVIER)S0924-2716(23)00259-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 38.73 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Li, Yuhao |e verfasserin |0 (orcid)0000-0001-6337-7794 |4 aut | |
245 | 1 | 0 | |a MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. | ||
650 | 4 | |a Mobile laser scanning point cloud | |
650 | 4 | |a Position inconsistency correction | |
650 | 4 | |a Multi-scale constraint | |
650 | 4 | |a Graph optimization | |
700 | 1 | |a Zou, Xianghong |e verfasserin |4 aut | |
700 | 1 | |a Li, Tian |e verfasserin |4 aut | |
700 | 1 | |a Sun, Sihan |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yuan |e verfasserin |4 aut | |
700 | 1 | |a Liang, Fuxun |e verfasserin |0 (orcid)0000-0002-5947-4732 |4 aut | |
700 | 1 | |a Li, Jiangping |e verfasserin |4 aut | |
700 | 1 | |a Yang, Bisheng |e verfasserin |0 (orcid)0000-0001-7736-0803 |4 aut | |
700 | 1 | |a Dong, Zhen |e verfasserin |0 (orcid)0000-0002-0152-3300 |4 aut | |
773 | 0 | 8 | |i Enthalten in |a International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 |t ISPRS journal of photogrammetry and remote sensing |d Amsterdam [u.a.] : Elsevier, 1989 |g 204, Seite 421-441 |h Online-Ressource |w (DE-627)320504557 |w (DE-600)2012663-3 |w (DE-576)096806567 |x 0924-2716 |7 nnns |
773 | 1 | 8 | |g volume:204 |g pages:421-441 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.73 |j Geodäsie |q VZ |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |q VZ |
951 | |a AR | ||
952 | |d 204 |h 421-441 |
author_variant |
y l yl x z xz t l tl s s ss y w yw f l fl j l jl b y by z d zd |
---|---|
matchkey_str |
article:09242716:2023----::uorpautsaeosritnacdoerpfaeokomsonc |
hierarchy_sort_str |
2023 |
bklnumber |
38.73 74.41 |
publishDate |
2023 |
allfields |
10.1016/j.isprsjprs.2023.09.018 doi (DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Li, Yuhao verfasserin (orcid)0000-0001-6337-7794 aut MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization Zou, Xianghong verfasserin aut Li, Tian verfasserin aut Sun, Sihan verfasserin aut Wang, Yuan verfasserin aut Liang, Fuxun verfasserin (orcid)0000-0002-5947-4732 aut Li, Jiangping verfasserin aut Yang, Bisheng verfasserin (orcid)0000-0001-7736-0803 aut Dong, Zhen verfasserin (orcid)0000-0002-0152-3300 aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 204, Seite 421-441 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:204 pages:421-441 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 204 421-441 |
spelling |
10.1016/j.isprsjprs.2023.09.018 doi (DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Li, Yuhao verfasserin (orcid)0000-0001-6337-7794 aut MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization Zou, Xianghong verfasserin aut Li, Tian verfasserin aut Sun, Sihan verfasserin aut Wang, Yuan verfasserin aut Liang, Fuxun verfasserin (orcid)0000-0002-5947-4732 aut Li, Jiangping verfasserin aut Yang, Bisheng verfasserin (orcid)0000-0001-7736-0803 aut Dong, Zhen verfasserin (orcid)0000-0002-0152-3300 aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 204, Seite 421-441 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:204 pages:421-441 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 204 421-441 |
allfields_unstemmed |
10.1016/j.isprsjprs.2023.09.018 doi (DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Li, Yuhao verfasserin (orcid)0000-0001-6337-7794 aut MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization Zou, Xianghong verfasserin aut Li, Tian verfasserin aut Sun, Sihan verfasserin aut Wang, Yuan verfasserin aut Liang, Fuxun verfasserin (orcid)0000-0002-5947-4732 aut Li, Jiangping verfasserin aut Yang, Bisheng verfasserin (orcid)0000-0001-7736-0803 aut Dong, Zhen verfasserin (orcid)0000-0002-0152-3300 aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 204, Seite 421-441 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:204 pages:421-441 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 204 421-441 |
allfieldsGer |
10.1016/j.isprsjprs.2023.09.018 doi (DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Li, Yuhao verfasserin (orcid)0000-0001-6337-7794 aut MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization Zou, Xianghong verfasserin aut Li, Tian verfasserin aut Sun, Sihan verfasserin aut Wang, Yuan verfasserin aut Liang, Fuxun verfasserin (orcid)0000-0002-5947-4732 aut Li, Jiangping verfasserin aut Yang, Bisheng verfasserin (orcid)0000-0001-7736-0803 aut Dong, Zhen verfasserin (orcid)0000-0002-0152-3300 aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 204, Seite 421-441 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:204 pages:421-441 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 204 421-441 |
allfieldsSound |
10.1016/j.isprsjprs.2023.09.018 doi (DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 DE-627 ger DE-627 rda eng 550 VZ 38.73 bkl 74.41 bkl Li, Yuhao verfasserin (orcid)0000-0001-6337-7794 aut MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization Zou, Xianghong verfasserin aut Li, Tian verfasserin aut Sun, Sihan verfasserin aut Wang, Yuan verfasserin aut Liang, Fuxun verfasserin (orcid)0000-0002-5947-4732 aut Li, Jiangping verfasserin aut Yang, Bisheng verfasserin (orcid)0000-0001-7736-0803 aut Dong, Zhen verfasserin (orcid)0000-0002-0152-3300 aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 204, Seite 421-441 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:204 pages:421-441 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.73 Geodäsie VZ 74.41 Luftaufnahmen Photogrammetrie VZ AR 204 421-441 |
language |
English |
source |
Enthalten in ISPRS journal of photogrammetry and remote sensing 204, Seite 421-441 volume:204 pages:421-441 |
sourceStr |
Enthalten in ISPRS journal of photogrammetry and remote sensing 204, Seite 421-441 volume:204 pages:421-441 |
format_phy_str_mv |
Article |
bklname |
Geodäsie Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
ISPRS journal of photogrammetry and remote sensing |
authorswithroles_txt_mv |
Li, Yuhao @@aut@@ Zou, Xianghong @@aut@@ Li, Tian @@aut@@ Sun, Sihan @@aut@@ Wang, Yuan @@aut@@ Liang, Fuxun @@aut@@ Li, Jiangping @@aut@@ Yang, Bisheng @@aut@@ Dong, Zhen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320504557 |
dewey-sort |
3550 |
id |
ELV065061195 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065061195</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231011s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2023.09.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065061195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(23)00259-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yuhao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6337-7794</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile laser scanning point cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position inconsistency correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scale constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xianghong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Sihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5947-4732</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7736-0803</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0152-3300</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">204, Seite 421-441</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield><subfield code="g">pages:421-441</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield><subfield code="h">421-441</subfield></datafield></record></collection>
|
author |
Li, Yuhao |
spellingShingle |
Li, Yuhao ddc 550 bkl 38.73 bkl 74.41 misc Mobile laser scanning point cloud misc Position inconsistency correction misc Multi-scale constraint misc Graph optimization MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
authorStr |
Li, Yuhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504557 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0924-2716 |
topic_title |
550 VZ 38.73 bkl 74.41 bkl MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction Mobile laser scanning point cloud Position inconsistency correction Multi-scale constraint Graph optimization |
topic |
ddc 550 bkl 38.73 bkl 74.41 misc Mobile laser scanning point cloud misc Position inconsistency correction misc Multi-scale constraint misc Graph optimization |
topic_unstemmed |
ddc 550 bkl 38.73 bkl 74.41 misc Mobile laser scanning point cloud misc Position inconsistency correction misc Multi-scale constraint misc Graph optimization |
topic_browse |
ddc 550 bkl 38.73 bkl 74.41 misc Mobile laser scanning point cloud misc Position inconsistency correction misc Multi-scale constraint misc Graph optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS journal of photogrammetry and remote sensing |
hierarchy_parent_id |
320504557 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
ISPRS journal of photogrammetry and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 |
title |
MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
ctrlnum |
(DE-627)ELV065061195 (ELSEVIER)S0924-2716(23)00259-9 |
title_full |
MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
author_sort |
Li, Yuhao |
journal |
ISPRS journal of photogrammetry and remote sensing |
journalStr |
ISPRS journal of photogrammetry and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
container_start_page |
421 |
author_browse |
Li, Yuhao Zou, Xianghong Li, Tian Sun, Sihan Wang, Yuan Liang, Fuxun Li, Jiangping Yang, Bisheng Dong, Zhen |
container_volume |
204 |
class |
550 VZ 38.73 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Yuhao |
doi_str_mv |
10.1016/j.isprsjprs.2023.09.018 |
normlink |
(ORCID)0000-0001-6337-7794 (ORCID)0000-0002-5947-4732 (ORCID)0000-0001-7736-0803 (ORCID)0000-0002-0152-3300 |
normlink_prefix_str_mv |
(orcid)0000-0001-6337-7794 (orcid)0000-0002-5947-4732 (orcid)0000-0001-7736-0803 (orcid)0000-0002-0152-3300 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
mucograph: a multi-scale constraint enhanced pose-graph framework for mls point cloud inconsistency correction |
title_auth |
MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
abstract |
The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. |
abstractGer |
The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. |
abstract_unstemmed |
The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction |
remote_bool |
true |
author2 |
Zou, Xianghong Li, Tian Sun, Sihan Wang, Yuan Liang, Fuxun Li, Jiangping Yang, Bisheng Dong, Zhen |
author2Str |
Zou, Xianghong Li, Tian Sun, Sihan Wang, Yuan Liang, Fuxun Li, Jiangping Yang, Bisheng Dong, Zhen |
ppnlink |
320504557 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isprsjprs.2023.09.018 |
up_date |
2024-07-06T21:41:40.309Z |
_version_ |
1803867495135707136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065061195</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231121093114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231011s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2023.09.018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065061195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(23)00259-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yuhao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6337-7794</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MuCoGraph: A multi-scale constraint enhanced pose-graph framework for MLS point cloud inconsistency correction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The position consistency of mobile laser scanning (MLS) point clouds is crucial for large-scale applications, and is normally guaranteed by the global navigation satellite system (GNSS) and high-precision inertial measurement unit (IMU) in the data acquisition. However, GNSS-denied environments such as city valleys result in significant position inconsistency for overlapping areas, and it is difficult to automatically locate these inconsistent areas. In this paper, to overcome these problems, we present MuCoGraph, which introduces multi-scale constraints to establish the correct correspondences for revisited areas, and formulates an enhanced pose graph for position inconsistency correction. The georeferenced MLS point cloud is first sliced into segments adaptively, and these segments are then abstracted as graph vertices, which satisfy local geometric consistency and rigid transformation hypotheses. Accurate revisited graph edges are then constructed hierarchically under multi-scale scenery consistency constraints. These revisited edges are initialized based on feature-based correspondence estimation and further unreliable edge pruning. Finally, through combination with virtual co-observations, correspondence-enhanced pose-graph optimization is introduced to globally redistribute the errors and obtain a high-precision point cloud. The proposed method was used to correct the MLS point cloud position inconsistency in three datasets. The average three-dimensional distance of the checkpoints was reduced from 0.362 m, 0.108 m, and 1.027 m to 0.057 m, 0.033 m, and 0.051 m for datasets I, II, and III respectively. In addition, the root-mean-square error of all three datasets was less than 0.04 m after correction. The experiments confirmed that the proposed method can automatically locate and correct the position inconsistency of MLS point clouds, showing good robustness and effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile laser scanning point cloud</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Position inconsistency correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-scale constraint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xianghong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Sihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5947-4732</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jiangping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7736-0803</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0152-3300</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">204, Seite 421-441</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield><subfield code="g">pages:421-441</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield><subfield code="h">421-441</subfield></datafield></record></collection>
|
score |
7.401602 |