Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis

Introduction: This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS).Methods: This analysis co...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Cao, Eric [verfasserIn]

Ma, Da [verfasserIn]

Nayak, Siddharth [verfasserIn]

Duong, Tim Q. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Positron emission tomography

Mild cognitive impairment

Machine learning

Artificial intelligence

Dementia

MRI

Übergeordnetes Werk:

Enthalten in: Neurobiology of disease - [Amsterdam] : Elsevier, 1994, 187

Übergeordnetes Werk:

volume:187

DOI / URN:

10.1016/j.nbd.2023.106310

Katalog-ID:

ELV065222393

Nicht das Richtige dabei?

Schreiben Sie uns!