Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks
The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual...
Ausführliche Beschreibung
Autor*in: |
Xu, Chuan [verfasserIn] Liu, Han [verfasserIn] Li, Qinghao [verfasserIn] Su, Yan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Digital signal processing - Orlando, Fla. : Academic Press, 1991, 142 |
---|---|
Übergeordnetes Werk: |
volume:142 |
DOI / URN: |
10.1016/j.dsp.2023.104217 |
---|
Katalog-ID: |
ELV065255690 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065255690 | ||
003 | DE-627 | ||
005 | 20231205153527.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231025s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.dsp.2023.104217 |2 doi | |
035 | |a (DE-627)ELV065255690 | ||
035 | |a (ELSEVIER)S1051-2004(23)00312-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Xu, Chuan |e verfasserin |0 (orcid)0009-0000-2340-4882 |4 aut | |
245 | 1 | 0 | |a Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. | ||
650 | 4 | |a Driver's attention prediction | |
650 | 4 | |a Attention mechanism | |
650 | 4 | |a Traffic driving | |
650 | 4 | |a Temporal and spatial information | |
700 | 1 | |a Liu, Han |e verfasserin |4 aut | |
700 | 1 | |a Li, Qinghao |e verfasserin |4 aut | |
700 | 1 | |a Su, Yan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Digital signal processing |d Orlando, Fla. : Academic Press, 1991 |g 142 |h Online-Ressource |w (DE-627)254910319 |w (DE-600)1463243-3 |w (DE-576)114818002 |x 1051-2004 |7 nnns |
773 | 1 | 8 | |g volume:142 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.73 |j Nachrichtenübertragung |q VZ |
951 | |a AR | ||
952 | |d 142 |
author_variant |
c x cx h l hl q l ql y s ys |
---|---|
matchkey_str |
article:10512004:2023----::rvrvsafxtoatninrdcinnyaiseeuig |
hierarchy_sort_str |
2023 |
bklnumber |
53.73 |
publishDate |
2023 |
allfields |
10.1016/j.dsp.2023.104217 doi (DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 DE-627 ger DE-627 rda eng 620 VZ 53.73 bkl Xu, Chuan verfasserin (orcid)0009-0000-2340-4882 aut Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information Liu, Han verfasserin aut Li, Qinghao verfasserin aut Su, Yan verfasserin aut Enthalten in Digital signal processing Orlando, Fla. : Academic Press, 1991 142 Online-Ressource (DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 1051-2004 nnns volume:142 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.73 Nachrichtenübertragung VZ AR 142 |
spelling |
10.1016/j.dsp.2023.104217 doi (DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 DE-627 ger DE-627 rda eng 620 VZ 53.73 bkl Xu, Chuan verfasserin (orcid)0009-0000-2340-4882 aut Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information Liu, Han verfasserin aut Li, Qinghao verfasserin aut Su, Yan verfasserin aut Enthalten in Digital signal processing Orlando, Fla. : Academic Press, 1991 142 Online-Ressource (DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 1051-2004 nnns volume:142 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.73 Nachrichtenübertragung VZ AR 142 |
allfields_unstemmed |
10.1016/j.dsp.2023.104217 doi (DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 DE-627 ger DE-627 rda eng 620 VZ 53.73 bkl Xu, Chuan verfasserin (orcid)0009-0000-2340-4882 aut Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information Liu, Han verfasserin aut Li, Qinghao verfasserin aut Su, Yan verfasserin aut Enthalten in Digital signal processing Orlando, Fla. : Academic Press, 1991 142 Online-Ressource (DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 1051-2004 nnns volume:142 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.73 Nachrichtenübertragung VZ AR 142 |
allfieldsGer |
10.1016/j.dsp.2023.104217 doi (DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 DE-627 ger DE-627 rda eng 620 VZ 53.73 bkl Xu, Chuan verfasserin (orcid)0009-0000-2340-4882 aut Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information Liu, Han verfasserin aut Li, Qinghao verfasserin aut Su, Yan verfasserin aut Enthalten in Digital signal processing Orlando, Fla. : Academic Press, 1991 142 Online-Ressource (DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 1051-2004 nnns volume:142 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.73 Nachrichtenübertragung VZ AR 142 |
allfieldsSound |
10.1016/j.dsp.2023.104217 doi (DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 DE-627 ger DE-627 rda eng 620 VZ 53.73 bkl Xu, Chuan verfasserin (orcid)0009-0000-2340-4882 aut Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information Liu, Han verfasserin aut Li, Qinghao verfasserin aut Su, Yan verfasserin aut Enthalten in Digital signal processing Orlando, Fla. : Academic Press, 1991 142 Online-Ressource (DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 1051-2004 nnns volume:142 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 53.73 Nachrichtenübertragung VZ AR 142 |
language |
English |
source |
Enthalten in Digital signal processing 142 volume:142 |
sourceStr |
Enthalten in Digital signal processing 142 volume:142 |
format_phy_str_mv |
Article |
bklname |
Nachrichtenübertragung |
institution |
findex.gbv.de |
topic_facet |
Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Digital signal processing |
authorswithroles_txt_mv |
Xu, Chuan @@aut@@ Liu, Han @@aut@@ Li, Qinghao @@aut@@ Su, Yan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
254910319 |
dewey-sort |
3620 |
id |
ELV065255690 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065255690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231025s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dsp.2023.104217</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065255690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1051-2004(23)00312-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Chuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0000-2340-4882</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driver's attention prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic driving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal and spatial information</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qinghao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Digital signal processing</subfield><subfield code="d">Orlando, Fla. : Academic Press, 1991</subfield><subfield code="g">142</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)254910319</subfield><subfield code="w">(DE-600)1463243-3</subfield><subfield code="w">(DE-576)114818002</subfield><subfield code="x">1051-2004</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="j">Nachrichtenübertragung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield></datafield></record></collection>
|
author |
Xu, Chuan |
spellingShingle |
Xu, Chuan ddc 620 bkl 53.73 misc Driver's attention prediction misc Attention mechanism misc Traffic driving misc Temporal and spatial information Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
authorStr |
Xu, Chuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254910319 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1051-2004 |
topic_title |
620 VZ 53.73 bkl Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks Driver's attention prediction Attention mechanism Traffic driving Temporal and spatial information |
topic |
ddc 620 bkl 53.73 misc Driver's attention prediction misc Attention mechanism misc Traffic driving misc Temporal and spatial information |
topic_unstemmed |
ddc 620 bkl 53.73 misc Driver's attention prediction misc Attention mechanism misc Traffic driving misc Temporal and spatial information |
topic_browse |
ddc 620 bkl 53.73 misc Driver's attention prediction misc Attention mechanism misc Traffic driving misc Temporal and spatial information |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Digital signal processing |
hierarchy_parent_id |
254910319 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Digital signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254910319 (DE-600)1463243-3 (DE-576)114818002 |
title |
Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
ctrlnum |
(DE-627)ELV065255690 (ELSEVIER)S1051-2004(23)00312-3 |
title_full |
Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
author_sort |
Xu, Chuan |
journal |
Digital signal processing |
journalStr |
Digital signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Xu, Chuan Liu, Han Li, Qinghao Su, Yan |
container_volume |
142 |
class |
620 VZ 53.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Chuan |
doi_str_mv |
10.1016/j.dsp.2023.104217 |
normlink |
(ORCID)0009-0000-2340-4882 |
normlink_prefix_str_mv |
(orcid)0009-0000-2340-4882 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
title_auth |
Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
abstract |
The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. |
abstractGer |
The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. |
abstract_unstemmed |
The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks |
remote_bool |
true |
author2 |
Liu, Han Li, Qinghao Su, Yan |
author2Str |
Liu, Han Li, Qinghao Su, Yan |
ppnlink |
254910319 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.dsp.2023.104217 |
up_date |
2024-07-06T22:23:26.529Z |
_version_ |
1803870123097849856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065255690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231025s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.dsp.2023.104217</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065255690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1051-2004(23)00312-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Chuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0000-2340-4882</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Driver's visual fixation attention prediction in dynamic scenes using hybrid neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The traffic driving scenario is dynamically varying and experienced drivers can allocate visual attention effectively in brief time intervals, focusing on prominent targets and areas in advance, thus ensuring safe driving. Therefore, it is significant to research the behavior of driver's visual attention allocation in the development of driver assistance systems and autonomous vehicles. Recently, inspired by top-down and bottom-up attention mechanisms, most visual attention models based on neural networks have been proposed. However, these models tend to yield highly distributed predictions for the specific driving scenario, and have relatively low prediction accuracy, making them unfeasible for being used in practice. Hence, to overcome these challenges, we propose a driver's visual attention model (DVAM) built on the encoder-decoder architecture with the utilization of the convolutional neural network (CNN) and the recurrent neural networks (RNN). Specifically, the model leverages the temporal and spatial dimension information to better mimic realistic dynamic driving, and extract abundant feature information, thus ensuring that the final predictions are authentic and effective. Then, extensive experiments demonstrate that our suggested DVAM achieves better robustness and precision in predicting driver attention to areas or targets compared to state-of-the-art methods on the DR(eye)VE dataset. Finally, our model is deployed on the TDV dataset to validate its generalization capabilities, which prove the potential for field adaptation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driver's attention prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attention mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic driving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temporal and spatial information</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qinghao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Digital signal processing</subfield><subfield code="d">Orlando, Fla. : Academic Press, 1991</subfield><subfield code="g">142</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)254910319</subfield><subfield code="w">(DE-600)1463243-3</subfield><subfield code="w">(DE-576)114818002</subfield><subfield code="x">1051-2004</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="j">Nachrichtenübertragung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield></datafield></record></collection>
|
score |
7.399577 |