Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns
A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite t...
Ausführliche Beschreibung
Autor*in: |
Wang, Gaofei [verfasserIn] Wei, Yang [verfasserIn] Shen, Cong [verfasserIn] Huang, Zhe [verfasserIn] Zheng, Kaiqi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Thin-walled structures - Amsterdam [u.a.] : Elsevier Science, 1983, 192 |
---|---|
Übergeordnetes Werk: |
volume:192 |
DOI / URN: |
10.1016/j.tws.2023.111152 |
---|
Katalog-ID: |
ELV065259351 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065259351 | ||
003 | DE-627 | ||
005 | 20231205153527.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231025s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.tws.2023.111152 |2 doi | |
035 | |a (DE-627)ELV065259351 | ||
035 | |a (ELSEVIER)S0263-8231(23)00630-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Wang, Gaofei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. | ||
650 | 4 | |a Ultrahigh-performance concrete (UHPC) | |
650 | 4 | |a FRP–steel composite tube | |
650 | 4 | |a Confinement | |
650 | 4 | |a Compression performance | |
650 | 4 | |a Strength model | |
700 | 1 | |a Wei, Yang |e verfasserin |0 (orcid)0000-0003-2915-3898 |4 aut | |
700 | 1 | |a Shen, Cong |e verfasserin |4 aut | |
700 | 1 | |a Huang, Zhe |e verfasserin |4 aut | |
700 | 1 | |a Zheng, Kaiqi |e verfasserin |0 (orcid)0000-0002-5159-6655 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Thin-walled structures |d Amsterdam [u.a.] : Elsevier Science, 1983 |g 192 |h Online-Ressource |w (DE-627)320423425 |w (DE-600)2002844-1 |w (DE-576)259484512 |7 nnns |
773 | 1 | 8 | |g volume:192 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 56.11 |j Baukonstruktion |q VZ |
951 | |a AR | ||
952 | |d 192 |
author_variant |
g w gw y w yw c s cs z h zh k z kz |
---|---|
matchkey_str |
wanggaofeiweiyangshenconghuangzhezhengka:2023----:opesopromnefrselopsttbcnieutaihefr |
hierarchy_sort_str |
2023 |
bklnumber |
50.31 56.11 |
publishDate |
2023 |
allfields |
10.1016/j.tws.2023.111152 doi (DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 DE-627 ger DE-627 rda eng 690 VZ 50.31 bkl 56.11 bkl Wang, Gaofei verfasserin aut Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model Wei, Yang verfasserin (orcid)0000-0003-2915-3898 aut Shen, Cong verfasserin aut Huang, Zhe verfasserin aut Zheng, Kaiqi verfasserin (orcid)0000-0002-5159-6655 aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 192 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 192 |
spelling |
10.1016/j.tws.2023.111152 doi (DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 DE-627 ger DE-627 rda eng 690 VZ 50.31 bkl 56.11 bkl Wang, Gaofei verfasserin aut Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model Wei, Yang verfasserin (orcid)0000-0003-2915-3898 aut Shen, Cong verfasserin aut Huang, Zhe verfasserin aut Zheng, Kaiqi verfasserin (orcid)0000-0002-5159-6655 aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 192 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 192 |
allfields_unstemmed |
10.1016/j.tws.2023.111152 doi (DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 DE-627 ger DE-627 rda eng 690 VZ 50.31 bkl 56.11 bkl Wang, Gaofei verfasserin aut Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model Wei, Yang verfasserin (orcid)0000-0003-2915-3898 aut Shen, Cong verfasserin aut Huang, Zhe verfasserin aut Zheng, Kaiqi verfasserin (orcid)0000-0002-5159-6655 aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 192 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 192 |
allfieldsGer |
10.1016/j.tws.2023.111152 doi (DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 DE-627 ger DE-627 rda eng 690 VZ 50.31 bkl 56.11 bkl Wang, Gaofei verfasserin aut Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model Wei, Yang verfasserin (orcid)0000-0003-2915-3898 aut Shen, Cong verfasserin aut Huang, Zhe verfasserin aut Zheng, Kaiqi verfasserin (orcid)0000-0002-5159-6655 aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 192 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 192 |
allfieldsSound |
10.1016/j.tws.2023.111152 doi (DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 DE-627 ger DE-627 rda eng 690 VZ 50.31 bkl 56.11 bkl Wang, Gaofei verfasserin aut Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model Wei, Yang verfasserin (orcid)0000-0003-2915-3898 aut Shen, Cong verfasserin aut Huang, Zhe verfasserin aut Zheng, Kaiqi verfasserin (orcid)0000-0002-5159-6655 aut Enthalten in Thin-walled structures Amsterdam [u.a.] : Elsevier Science, 1983 192 Online-Ressource (DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 nnns volume:192 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 192 |
language |
English |
source |
Enthalten in Thin-walled structures 192 volume:192 |
sourceStr |
Enthalten in Thin-walled structures 192 volume:192 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Thin-walled structures |
authorswithroles_txt_mv |
Wang, Gaofei @@aut@@ Wei, Yang @@aut@@ Shen, Cong @@aut@@ Huang, Zhe @@aut@@ Zheng, Kaiqi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320423425 |
dewey-sort |
3690 |
id |
ELV065259351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065259351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231025s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2023.111152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065259351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(23)00630-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Gaofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete (UHPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRP–steel composite tube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2915-3898</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Kaiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5159-6655</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin-walled structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">192</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423425</subfield><subfield code="w">(DE-600)2002844-1</subfield><subfield code="w">(DE-576)259484512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield></datafield></record></collection>
|
author |
Wang, Gaofei |
spellingShingle |
Wang, Gaofei ddc 690 bkl 50.31 bkl 56.11 misc Ultrahigh-performance concrete (UHPC) misc FRP–steel composite tube misc Confinement misc Compression performance misc Strength model Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
authorStr |
Wang, Gaofei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423425 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.31 bkl 56.11 bkl Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns Ultrahigh-performance concrete (UHPC) FRP–steel composite tube Confinement Compression performance Strength model |
topic |
ddc 690 bkl 50.31 bkl 56.11 misc Ultrahigh-performance concrete (UHPC) misc FRP–steel composite tube misc Confinement misc Compression performance misc Strength model |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 56.11 misc Ultrahigh-performance concrete (UHPC) misc FRP–steel composite tube misc Confinement misc Compression performance misc Strength model |
topic_browse |
ddc 690 bkl 50.31 bkl 56.11 misc Ultrahigh-performance concrete (UHPC) misc FRP–steel composite tube misc Confinement misc Compression performance misc Strength model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Thin-walled structures |
hierarchy_parent_id |
320423425 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Thin-walled structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423425 (DE-600)2002844-1 (DE-576)259484512 |
title |
Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
ctrlnum |
(DE-627)ELV065259351 (ELSEVIER)S0263-8231(23)00630-4 |
title_full |
Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
author_sort |
Wang, Gaofei |
journal |
Thin-walled structures |
journalStr |
Thin-walled structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Wang, Gaofei Wei, Yang Shen, Cong Huang, Zhe Zheng, Kaiqi |
container_volume |
192 |
class |
690 VZ 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Gaofei |
doi_str_mv |
10.1016/j.tws.2023.111152 |
normlink |
(ORCID)0000-0003-2915-3898 (ORCID)0000-0002-5159-6655 |
normlink_prefix_str_mv |
(orcid)0000-0003-2915-3898 (orcid)0000-0002-5159-6655 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
compression performance of frp-steel composite tube-confined ultrahigh-performance concrete (uhpc) columns |
title_auth |
Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
abstract |
A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. |
abstractGer |
A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. |
abstract_unstemmed |
A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns |
remote_bool |
true |
author2 |
Wei, Yang Shen, Cong Huang, Zhe Zheng, Kaiqi |
author2Str |
Wei, Yang Shen, Cong Huang, Zhe Zheng, Kaiqi |
ppnlink |
320423425 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.tws.2023.111152 |
up_date |
2024-07-06T22:24:13.119Z |
_version_ |
1803870171952054272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065259351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205153527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231025s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.tws.2023.111152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065259351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8231(23)00630-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Gaofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compression performance of FRP-steel composite tube-confined ultrahigh-performance concrete (UHPC) columns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A new ultrahigh-performance concrete (UHPC)-filled fibre-reinforced polymer (FRP)-steel composite tube column (UHPCFSCT) was designed. This structure uses not only UHPC with high strength and durability to reduce the section size and improve the stiffness of the column but also FRP–steel composite tubes as confinement tubes to reduce the brittleness of the UHPC. Thirty-two UHPCFSCTs were subjected to monotonic axial compression tests. The key parameters include the number of FRP layers, FRP type, FRP hybrid condition and loading mode. The full-section-loaded specimens mainly exhibit shear failure, while the core-loaded specimens mainly exhibit middle expansion deformation. The stress–strain curves of UHPCFSCTs represent three types of columns with different numbers of FRP layers and FRP types: columns with weak, medium and strong confinements. The weak and medium confinement curves exhibit a softening section after the elastic–plastic stage, and the strong confinement curve shows a bilinear response. With the increase in the number of FRP layers, compared with those of the unconfined UHPC column, the ratios of the increases in peak stress, ultimate stress, and ultimate strain are 1.436∼2.794, 2.046∼4.822 and 0.778∼2.315, respectively. The bearing capacity of the CFRP-confined specimens is stronger, while the deformation capacity of the BFRP-confined specimens is stronger. The ultimate stresses of the core-loaded specimens are 19.6%∼30.6% higher than those of the full-section-loaded specimens. Existing strength models were used to evaluate the test data of UHPCFSCTs, and the Hu et al. model was used to predict the strength of UHPCFSCTs under core loading. Finally, through database regression analysis, a strength model that can be used to predict steel tube-confined UHPC, FRP-confined UHPC and UHPCFSCT strength under full-section loading was proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete (UHPC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FRP–steel composite tube</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Confinement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strength model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2915-3898</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Kaiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5159-6655</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Thin-walled structures</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1983</subfield><subfield code="g">192</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423425</subfield><subfield code="w">(DE-600)2002844-1</subfield><subfield code="w">(DE-576)259484512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">192</subfield></datafield></record></collection>
|
score |
7.401311 |