A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf
A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the...
Ausführliche Beschreibung
Autor*in: |
Jin, Zijian [verfasserIn] Fang, Hui [verfasserIn] Liu, Yong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Ultrahigh-performance concrete Pile-supported wharf structure |
---|
Übergeordnetes Werk: |
Enthalten in: Ocean engineering - Amsterdam [u.a.] : Elsevier Science, 1970, 287 |
---|---|
Übergeordnetes Werk: |
volume:287 |
DOI / URN: |
10.1016/j.oceaneng.2023.115812 |
---|
Katalog-ID: |
ELV065268636 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065268636 | ||
003 | DE-627 | ||
005 | 20231222093304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231027s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2023.115812 |2 doi | |
035 | |a (DE-627)ELV065268636 | ||
035 | |a (ELSEVIER)S0029-8018(23)02196-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Jin, Zijian |e verfasserin |4 aut | |
245 | 1 | 0 | |a A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. | ||
650 | 4 | |a Ultrahigh-performance concrete | |
650 | 4 | |a Pile-supported wharf structure | |
650 | 4 | |a Cyclic elastoplastic behaviour | |
650 | 4 | |a Multiscale optimization | |
700 | 1 | |a Fang, Hui |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Ocean engineering |d Amsterdam [u.a.] : Elsevier Science, 1970 |g 287 |h Online-Ressource |w (DE-627)30658977X |w (DE-600)1498543-3 |w (DE-576)259484164 |x 0029-8018 |7 nnns |
773 | 1 | 8 | |g volume:287 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 287 |
author_variant |
z j zj h f hf y l yl |
---|---|
matchkey_str |
article:00298018:2023----::mliclotmztomtoooyoccieatpatcefracobaplji |
hierarchy_sort_str |
2023 |
bklnumber |
50.92 |
publishDate |
2023 |
allfields |
10.1016/j.oceaneng.2023.115812 doi (DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Jin, Zijian verfasserin aut A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization Fang, Hui verfasserin aut Liu, Yong verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 287 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:287 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 287 |
spelling |
10.1016/j.oceaneng.2023.115812 doi (DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Jin, Zijian verfasserin aut A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization Fang, Hui verfasserin aut Liu, Yong verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 287 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:287 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 287 |
allfields_unstemmed |
10.1016/j.oceaneng.2023.115812 doi (DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Jin, Zijian verfasserin aut A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization Fang, Hui verfasserin aut Liu, Yong verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 287 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:287 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 287 |
allfieldsGer |
10.1016/j.oceaneng.2023.115812 doi (DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Jin, Zijian verfasserin aut A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization Fang, Hui verfasserin aut Liu, Yong verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 287 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:287 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 287 |
allfieldsSound |
10.1016/j.oceaneng.2023.115812 doi (DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 DE-627 ger DE-627 rda eng 690 VZ 50.92 bkl Jin, Zijian verfasserin aut A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization Fang, Hui verfasserin aut Liu, Yong verfasserin aut Enthalten in Ocean engineering Amsterdam [u.a.] : Elsevier Science, 1970 287 Online-Ressource (DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 0029-8018 nnns volume:287 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.92 Meerestechnik VZ AR 287 |
language |
English |
source |
Enthalten in Ocean engineering 287 volume:287 |
sourceStr |
Enthalten in Ocean engineering 287 volume:287 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Ocean engineering |
authorswithroles_txt_mv |
Jin, Zijian @@aut@@ Fang, Hui @@aut@@ Liu, Yong @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
30658977X |
dewey-sort |
3690 |
id |
ELV065268636 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065268636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222093304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231027s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.115812</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065268636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)02196-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Zijian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pile-supported wharf structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic elastoplastic behaviour</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">287</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">287</subfield></datafield></record></collection>
|
author |
Jin, Zijian |
spellingShingle |
Jin, Zijian ddc 690 bkl 50.92 misc Ultrahigh-performance concrete misc Pile-supported wharf structure misc Cyclic elastoplastic behaviour misc Multiscale optimization A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
authorStr |
Jin, Zijian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30658977X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-8018 |
topic_title |
690 VZ 50.92 bkl A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf Ultrahigh-performance concrete Pile-supported wharf structure Cyclic elastoplastic behaviour Multiscale optimization |
topic |
ddc 690 bkl 50.92 misc Ultrahigh-performance concrete misc Pile-supported wharf structure misc Cyclic elastoplastic behaviour misc Multiscale optimization |
topic_unstemmed |
ddc 690 bkl 50.92 misc Ultrahigh-performance concrete misc Pile-supported wharf structure misc Cyclic elastoplastic behaviour misc Multiscale optimization |
topic_browse |
ddc 690 bkl 50.92 misc Ultrahigh-performance concrete misc Pile-supported wharf structure misc Cyclic elastoplastic behaviour misc Multiscale optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ocean engineering |
hierarchy_parent_id |
30658977X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Ocean engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30658977X (DE-600)1498543-3 (DE-576)259484164 |
title |
A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
ctrlnum |
(DE-627)ELV065268636 (ELSEVIER)S0029-8018(23)02196-0 |
title_full |
A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
author_sort |
Jin, Zijian |
journal |
Ocean engineering |
journalStr |
Ocean engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Jin, Zijian Fang, Hui Liu, Yong |
container_volume |
287 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jin, Zijian |
doi_str_mv |
10.1016/j.oceaneng.2023.115812 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
a multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
title_auth |
A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
abstract |
A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. |
abstractGer |
A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. |
abstract_unstemmed |
A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf |
remote_bool |
true |
author2 |
Fang, Hui Liu, Yong |
author2Str |
Fang, Hui Liu, Yong |
ppnlink |
30658977X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.oceaneng.2023.115812 |
up_date |
2024-07-06T22:26:06.503Z |
_version_ |
1803870290841698304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065268636</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231222093304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231027s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2023.115812</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065268636</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(23)02196-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Zijian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multiscale optimization methodology for cyclic elastoplastic performance of beam-pile joint member in pile-supported wharf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A material-member-structure multiscale optimization methodology, which can be utilized for improving the elastoplastic behaviour of the beam-pile joint member in pile-supported wharf under cyclic loading, was developed on the base of the application of high-specific stiffness material. Based on the representative volume element (RVE) method, the parameterized relations between the mesoscale phases (e.g., steel fibers, interfacial transition zone, and matrix) and macroscale homogenized elastoplasticity of ultrahigh-performance concrete (UHPC) reinforced with steel fibers were obtained under periodic boundary conditions. The physical equivalence relation between material scale and member scale was established by utilizing the refined constitutive model with the macroscopic mechanical parameters and exponential decay damage evolution factors. UHPC material property tests and cyclic loading tests of small-scale beam-pile joint specimens were performed respectively, and the results were analyzed and utilized to validate the numerical model and multiscale optimization method. Using the computational platform ABAQUS, the cyclic elastoplastic performances of the novel beam-pile joint members were evaluated numerically by pseudo-static hysteretic loading. As an illustration, a multiscale modelling approach for the pile-supported wharf frame system was presented and employed to assess the seismic performance improvement through the optimization of the beam-pile joint members. The coupled solution of refined member damage and large-scale structural bearing capacity was realized by utilizing the deformation coordination condition and force balance equation, which bridges the member scale and structure scale. This study aims to provide a reference for future design and optimization of the joint members in marine frame structures, to enhance cyclic bearing capacities and reduce reinforcement consumptions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pile-supported wharf structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclic elastoplastic behaviour</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale optimization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Ocean engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1970</subfield><subfield code="g">287</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30658977X</subfield><subfield code="w">(DE-600)1498543-3</subfield><subfield code="w">(DE-576)259484164</subfield><subfield code="x">0029-8018</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">287</subfield></datafield></record></collection>
|
score |
7.401311 |