Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes
This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircula...
Ausführliche Beschreibung
Autor*in: |
Li, Ni [verfasserIn] Pu, Hang [verfasserIn] Zhou, Lin [verfasserIn] Qu, Hangchen [verfasserIn] Zhang, Yining [verfasserIn] Dong, Ming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 217 |
---|---|
Übergeordnetes Werk: |
volume:217 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2023.124721 |
---|
Katalog-ID: |
ELV065270134 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065270134 | ||
003 | DE-627 | ||
005 | 20231027093011.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231027s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2023.124721 |2 doi | |
035 | |a (DE-627)ELV065270134 | ||
035 | |a (ELSEVIER)S0017-9310(23)00866-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Li, Ni |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. | ||
650 | 4 | |a Supercritical pressure carbon dioxide | |
650 | 4 | |a Mixed convection | |
650 | 4 | |a Heat transfer deterioration | |
650 | 4 | |a Buoyancy force | |
650 | 4 | |a Horizontal minichannels | |
700 | 1 | |a Pu, Hang |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Lin |e verfasserin |4 aut | |
700 | 1 | |a Qu, Hangchen |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yining |e verfasserin |4 aut | |
700 | 1 | |a Dong, Ming |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 217 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:217 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 217 |
author_variant |
n l nl h p hp l z lz h q hq y z yz m d md |
---|---|
matchkey_str |
article:18792189:2023----::ueiasmltosfetrnfrhnmnwttruetueciiacrodoielwnetdoi |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijheatmasstransfer.2023.124721 doi (DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Ni verfasserin aut Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels Pu, Hang verfasserin aut Zhou, Lin verfasserin aut Qu, Hangchen verfasserin aut Zhang, Yining verfasserin aut Dong, Ming verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 217 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 217 |
spelling |
10.1016/j.ijheatmasstransfer.2023.124721 doi (DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Ni verfasserin aut Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels Pu, Hang verfasserin aut Zhou, Lin verfasserin aut Qu, Hangchen verfasserin aut Zhang, Yining verfasserin aut Dong, Ming verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 217 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 217 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2023.124721 doi (DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Ni verfasserin aut Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels Pu, Hang verfasserin aut Zhou, Lin verfasserin aut Qu, Hangchen verfasserin aut Zhang, Yining verfasserin aut Dong, Ming verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 217 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 217 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2023.124721 doi (DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Ni verfasserin aut Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels Pu, Hang verfasserin aut Zhou, Lin verfasserin aut Qu, Hangchen verfasserin aut Zhang, Yining verfasserin aut Dong, Ming verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 217 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 217 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2023.124721 doi (DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 DE-627 ger DE-627 rda eng 620 VZ 50.38 bkl Li, Ni verfasserin aut Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels Pu, Hang verfasserin aut Zhou, Lin verfasserin aut Qu, Hangchen verfasserin aut Zhang, Yining verfasserin aut Dong, Ming verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 217 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:217 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik VZ AR 217 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 217 volume:217 |
sourceStr |
Enthalten in International journal of heat and mass transfer 217 volume:217 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Li, Ni @@aut@@ Pu, Hang @@aut@@ Zhou, Lin @@aut@@ Qu, Hangchen @@aut@@ Zhang, Yining @@aut@@ Dong, Ming @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV065270134 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065270134</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231027093011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231027s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124721</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065270134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00866-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical pressure carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal minichannels</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Hangchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yining</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">217</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield></datafield></record></collection>
|
author |
Li, Ni |
spellingShingle |
Li, Ni ddc 620 bkl 50.38 misc Supercritical pressure carbon dioxide misc Mixed convection misc Heat transfer deterioration misc Buoyancy force misc Horizontal minichannels Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
authorStr |
Li, Ni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 VZ 50.38 bkl Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes Supercritical pressure carbon dioxide Mixed convection Heat transfer deterioration Buoyancy force Horizontal minichannels |
topic |
ddc 620 bkl 50.38 misc Supercritical pressure carbon dioxide misc Mixed convection misc Heat transfer deterioration misc Buoyancy force misc Horizontal minichannels |
topic_unstemmed |
ddc 620 bkl 50.38 misc Supercritical pressure carbon dioxide misc Mixed convection misc Heat transfer deterioration misc Buoyancy force misc Horizontal minichannels |
topic_browse |
ddc 620 bkl 50.38 misc Supercritical pressure carbon dioxide misc Mixed convection misc Heat transfer deterioration misc Buoyancy force misc Horizontal minichannels |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
ctrlnum |
(DE-627)ELV065270134 (ELSEVIER)S0017-9310(23)00866-9 |
title_full |
Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
author_sort |
Li, Ni |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Li, Ni Pu, Hang Zhou, Lin Qu, Hangchen Zhang, Yining Dong, Ming |
container_volume |
217 |
class |
620 VZ 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Ni |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2023.124721 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
title_auth |
Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
abstract |
This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. |
abstractGer |
This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. |
abstract_unstemmed |
This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes |
remote_bool |
true |
author2 |
Pu, Hang Zhou, Lin Qu, Hangchen Zhang, Yining Dong, Ming |
author2Str |
Pu, Hang Zhou, Lin Qu, Hangchen Zhang, Yining Dong, Ming |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2023.124721 |
up_date |
2024-07-06T22:26:24.347Z |
_version_ |
1803870309553537024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065270134</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231027093011.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231027s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.124721</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065270134</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00866-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Ni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulations of heat transfer phenomena with turbulent supercritical carbon dioxide flow in heated horizontal minichannels with different shapes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to clarify and evaluate the influence of buoyancy force on heat transfer to supercritical carbon dioxide flowing in horizontal minichannels. Numerical simulations are carried out on the turbulent mixed convective heat transfer of supercritical carbon dioxide in horizontal semicircular, circular, and rectangular minichannels (d h = 2 mm) for the low-pressure side of a closed Brayton system heat exchanger (p = 8 MPa, T in = 303 K, G = 1200 kg‧m−2‧s−1, Re in = 42,521–42,860, q = 50–30 kW‧m−2). The heat transfer mechanism in different channels is analyzed and the effect of heat flux is investigated. The heat transfer in the bottom wall is stronger than that in the top wall due to the buoyancy force. The heat transfer at the corners of semicircular and rectangular channels is greatly reduced due to blockage compared to the circular channel. A transition in the heat transfer regime from enhanced to normal is found as the heat-to-mass flux ratio increases to 83.33 J·kg−1. Starting from q/G = 125 J‧kg−1, there is a significant heat transfer deterioration, and the difference between the top and bottom walls gradually becomes apparent under the influence of buoyancy. In addition, the applicability of three existing buoyancy parameters (Bu c, Bu J, and Bu P) is evaluated. The Bu P buoyancy criterion agrees best with the simulation results. A comparative study with the case without gravity identifies a threshold value of 6.0 for Bu P in the circular channel and a threshold value of 1.0 for Bu P in the semicircular and rectangular channels. Above this threshold, natural convection will have a considerable effect on forced turbulent heat transfer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supercritical pressure carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed convection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer deterioration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal minichannels</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pu, Hang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qu, Hangchen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yining</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">217</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:217</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">217</subfield></datafield></record></collection>
|
score |
7.402525 |