Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration
The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabec...
Ausführliche Beschreibung
Autor*in: |
Liu, Jiantao [verfasserIn] Wang, Runqing [verfasserIn] Gong, Xi [verfasserIn] Zhu, Yihan [verfasserIn] Shen, Chengyu [verfasserIn] Zhu, Zhixian [verfasserIn] Li, Yiming [verfasserIn] Li, Zhuoyue [verfasserIn] Ren, Zhiwei [verfasserIn] Chen, Xiaopeng [verfasserIn] Bian, Weiguo [verfasserIn] Wang, Dezhi [verfasserIn] Yang, Xiaobin [verfasserIn] Zhang, Yingang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Materials and design - Amsterdam [u.a.] : Elsevier Science, 1980, 234 |
---|---|
Übergeordnetes Werk: |
volume:234 |
DOI / URN: |
10.1016/j.matdes.2023.112330 |
---|
Katalog-ID: |
ELV065307968 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV065307968 | ||
003 | DE-627 | ||
005 | 20231028093249.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231028s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2023.112330 |2 doi | |
035 | |a (DE-627)ELV065307968 | ||
035 | |a (ELSEVIER)S0264-1275(23)00745-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 690 |q VZ |
084 | |a 51.00 |2 bkl | ||
084 | |a 51.32 |2 bkl | ||
100 | 1 | |a Liu, Jiantao |e verfasserin |0 (orcid)0000-0001-5845-3385 |4 aut | |
245 | 1 | 0 | |a Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. | ||
650 | 4 | |a Trabecular bone scaffold | |
650 | 4 | |a Titanium alloy | |
650 | 4 | |a Porosity | |
650 | 4 | |a Pore size | |
650 | 4 | |a Biomechanics | |
650 | 4 | |a Osseointegration | |
700 | 1 | |a Wang, Runqing |e verfasserin |4 aut | |
700 | 1 | |a Gong, Xi |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Yihan |e verfasserin |4 aut | |
700 | 1 | |a Shen, Chengyu |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Zhixian |e verfasserin |4 aut | |
700 | 1 | |a Li, Yiming |e verfasserin |4 aut | |
700 | 1 | |a Li, Zhuoyue |e verfasserin |4 aut | |
700 | 1 | |a Ren, Zhiwei |e verfasserin |4 aut | |
700 | 1 | |a Chen, Xiaopeng |e verfasserin |4 aut | |
700 | 1 | |a Bian, Weiguo |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dezhi |e verfasserin |4 aut | |
700 | 1 | |a Yang, Xiaobin |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yingang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Materials and design |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 234 |h Online-Ressource |w (DE-627)32052857X |w (DE-600)2015480-X |w (DE-576)096806656 |x 1873-4197 |7 nnns |
773 | 1 | 8 | |g volume:234 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
936 | b | k | |a 51.32 |j Werkstoffmechanik |q VZ |
951 | |a AR | ||
952 | |d 234 |
author_variant |
j l jl r w rw x g xg y z yz c s cs z z zz y l yl z l zl z r zr x c xc w b wb d w dw x y xy y z yz |
---|---|
matchkey_str |
article:18734197:2023----::ia4boieisaflsobntsuegneigarctoboeh |
hierarchy_sort_str |
2023 |
bklnumber |
51.00 51.32 |
publishDate |
2023 |
allfields |
10.1016/j.matdes.2023.112330 doi (DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 DE-627 ger DE-627 rda eng 600 690 VZ 51.00 bkl 51.32 bkl Liu, Jiantao verfasserin (orcid)0000-0001-5845-3385 aut Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration Wang, Runqing verfasserin aut Gong, Xi verfasserin aut Zhu, Yihan verfasserin aut Shen, Chengyu verfasserin aut Zhu, Zhixian verfasserin aut Li, Yiming verfasserin aut Li, Zhuoyue verfasserin aut Ren, Zhiwei verfasserin aut Chen, Xiaopeng verfasserin aut Bian, Weiguo verfasserin aut Wang, Dezhi verfasserin aut Yang, Xiaobin verfasserin aut Zhang, Yingang verfasserin aut Enthalten in Materials and design Amsterdam [u.a.] : Elsevier Science, 1980 234 Online-Ressource (DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 1873-4197 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 234 |
spelling |
10.1016/j.matdes.2023.112330 doi (DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 DE-627 ger DE-627 rda eng 600 690 VZ 51.00 bkl 51.32 bkl Liu, Jiantao verfasserin (orcid)0000-0001-5845-3385 aut Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration Wang, Runqing verfasserin aut Gong, Xi verfasserin aut Zhu, Yihan verfasserin aut Shen, Chengyu verfasserin aut Zhu, Zhixian verfasserin aut Li, Yiming verfasserin aut Li, Zhuoyue verfasserin aut Ren, Zhiwei verfasserin aut Chen, Xiaopeng verfasserin aut Bian, Weiguo verfasserin aut Wang, Dezhi verfasserin aut Yang, Xiaobin verfasserin aut Zhang, Yingang verfasserin aut Enthalten in Materials and design Amsterdam [u.a.] : Elsevier Science, 1980 234 Online-Ressource (DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 1873-4197 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 234 |
allfields_unstemmed |
10.1016/j.matdes.2023.112330 doi (DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 DE-627 ger DE-627 rda eng 600 690 VZ 51.00 bkl 51.32 bkl Liu, Jiantao verfasserin (orcid)0000-0001-5845-3385 aut Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration Wang, Runqing verfasserin aut Gong, Xi verfasserin aut Zhu, Yihan verfasserin aut Shen, Chengyu verfasserin aut Zhu, Zhixian verfasserin aut Li, Yiming verfasserin aut Li, Zhuoyue verfasserin aut Ren, Zhiwei verfasserin aut Chen, Xiaopeng verfasserin aut Bian, Weiguo verfasserin aut Wang, Dezhi verfasserin aut Yang, Xiaobin verfasserin aut Zhang, Yingang verfasserin aut Enthalten in Materials and design Amsterdam [u.a.] : Elsevier Science, 1980 234 Online-Ressource (DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 1873-4197 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 234 |
allfieldsGer |
10.1016/j.matdes.2023.112330 doi (DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 DE-627 ger DE-627 rda eng 600 690 VZ 51.00 bkl 51.32 bkl Liu, Jiantao verfasserin (orcid)0000-0001-5845-3385 aut Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration Wang, Runqing verfasserin aut Gong, Xi verfasserin aut Zhu, Yihan verfasserin aut Shen, Chengyu verfasserin aut Zhu, Zhixian verfasserin aut Li, Yiming verfasserin aut Li, Zhuoyue verfasserin aut Ren, Zhiwei verfasserin aut Chen, Xiaopeng verfasserin aut Bian, Weiguo verfasserin aut Wang, Dezhi verfasserin aut Yang, Xiaobin verfasserin aut Zhang, Yingang verfasserin aut Enthalten in Materials and design Amsterdam [u.a.] : Elsevier Science, 1980 234 Online-Ressource (DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 1873-4197 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 234 |
allfieldsSound |
10.1016/j.matdes.2023.112330 doi (DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 DE-627 ger DE-627 rda eng 600 690 VZ 51.00 bkl 51.32 bkl Liu, Jiantao verfasserin (orcid)0000-0001-5845-3385 aut Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration Wang, Runqing verfasserin aut Gong, Xi verfasserin aut Zhu, Yihan verfasserin aut Shen, Chengyu verfasserin aut Zhu, Zhixian verfasserin aut Li, Yiming verfasserin aut Li, Zhuoyue verfasserin aut Ren, Zhiwei verfasserin aut Chen, Xiaopeng verfasserin aut Bian, Weiguo verfasserin aut Wang, Dezhi verfasserin aut Yang, Xiaobin verfasserin aut Zhang, Yingang verfasserin aut Enthalten in Materials and design Amsterdam [u.a.] : Elsevier Science, 1980 234 Online-Ressource (DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 1873-4197 nnns volume:234 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 51.00 Werkstoffkunde: Allgemeines VZ 51.32 Werkstoffmechanik VZ AR 234 |
language |
English |
source |
Enthalten in Materials and design 234 volume:234 |
sourceStr |
Enthalten in Materials and design 234 volume:234 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines Werkstoffmechanik |
institution |
findex.gbv.de |
topic_facet |
Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Materials and design |
authorswithroles_txt_mv |
Liu, Jiantao @@aut@@ Wang, Runqing @@aut@@ Gong, Xi @@aut@@ Zhu, Yihan @@aut@@ Shen, Chengyu @@aut@@ Zhu, Zhixian @@aut@@ Li, Yiming @@aut@@ Li, Zhuoyue @@aut@@ Ren, Zhiwei @@aut@@ Chen, Xiaopeng @@aut@@ Bian, Weiguo @@aut@@ Wang, Dezhi @@aut@@ Yang, Xiaobin @@aut@@ Zhang, Yingang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
dewey-sort |
3600 |
id |
ELV065307968 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065307968</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231028093249.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231028s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.112330</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065307968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0264-1275(23)00745-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jiantao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5845-3385</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular bone scaffold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osseointegration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Runqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Chengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Zhixian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhuoyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Zhiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaopeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Weiguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dezhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiaobin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yingang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="w">(DE-576)096806656</subfield><subfield code="x">1873-4197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
author |
Liu, Jiantao |
spellingShingle |
Liu, Jiantao ddc 600 bkl 51.00 bkl 51.32 misc Trabecular bone scaffold misc Titanium alloy misc Porosity misc Pore size misc Biomechanics misc Osseointegration Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
authorStr |
Liu, Jiantao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
dewey-ones |
600 - Technology 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4197 |
topic_title |
600 690 VZ 51.00 bkl 51.32 bkl Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration Trabecular bone scaffold Titanium alloy Porosity Pore size Biomechanics Osseointegration |
topic |
ddc 600 bkl 51.00 bkl 51.32 misc Trabecular bone scaffold misc Titanium alloy misc Porosity misc Pore size misc Biomechanics misc Osseointegration |
topic_unstemmed |
ddc 600 bkl 51.00 bkl 51.32 misc Trabecular bone scaffold misc Titanium alloy misc Porosity misc Pore size misc Biomechanics misc Osseointegration |
topic_browse |
ddc 600 bkl 51.00 bkl 51.32 misc Trabecular bone scaffold misc Titanium alloy misc Porosity misc Pore size misc Biomechanics misc Osseointegration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials and design |
hierarchy_parent_id |
32052857X |
dewey-tens |
600 - Technology 690 - Building & construction |
hierarchy_top_title |
Materials and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X (DE-576)096806656 |
title |
Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
ctrlnum |
(DE-627)ELV065307968 (ELSEVIER)S0264-1275(23)00745-1 |
title_full |
Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
author_sort |
Liu, Jiantao |
journal |
Materials and design |
journalStr |
Materials and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Jiantao Wang, Runqing Gong, Xi Zhu, Yihan Shen, Chengyu Zhu, Zhixian Li, Yiming Li, Zhuoyue Ren, Zhiwei Chen, Xiaopeng Bian, Weiguo Wang, Dezhi Yang, Xiaobin Zhang, Yingang |
container_volume |
234 |
class |
600 690 VZ 51.00 bkl 51.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Jiantao |
doi_str_mv |
10.1016/j.matdes.2023.112330 |
normlink |
(ORCID)0000-0001-5845-3385 |
normlink_prefix_str_mv |
(orcid)0000-0001-5845-3385 |
dewey-full |
600 690 |
author2-role |
verfasserin |
title_sort |
ti6al4v biomimetic scaffolds for bone tissue engineering: fabrication, biomechanics and osseointegration |
title_auth |
Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
abstract |
The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. |
abstractGer |
The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. |
abstract_unstemmed |
The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration |
remote_bool |
true |
author2 |
Wang, Runqing Gong, Xi Zhu, Yihan Shen, Chengyu Zhu, Zhixian Li, Yiming Li, Zhuoyue Ren, Zhiwei Chen, Xiaopeng Bian, Weiguo Wang, Dezhi Yang, Xiaobin Zhang, Yingang |
author2Str |
Wang, Runqing Gong, Xi Zhu, Yihan Shen, Chengyu Zhu, Zhixian Li, Yiming Li, Zhuoyue Ren, Zhiwei Chen, Xiaopeng Bian, Weiguo Wang, Dezhi Yang, Xiaobin Zhang, Yingang |
ppnlink |
32052857X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2023.112330 |
up_date |
2024-07-06T22:34:34.032Z |
_version_ |
1803870823025475584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV065307968</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231028093249.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231028s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2023.112330</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065307968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0264-1275(23)00745-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jiantao</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5845-3385</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design of porous structure that mimic trabecular bone is an effective method for optimizing the elastic modulus and osseointegration properties of titanium alloy implants. However, there is no consensus on which structure is best. In this study, we fabricated 24 different types of Ti6Al4V trabecular bone scaffolds with varying porosity and average pore size using Voronoi algorithm and selective laser melting technology. The biomechanics and osseointegration properties were studied by mechanical tests, computational fluid dynamics, cell and animal experiments. Our results showed that with an increase of porosity and average pore size, the scaffold's yield strength, ultimate strength, elastic modulus and shear stress exhibited an overall decreasing trend while the permeability and nutrient transport improved. Cell experiments showed that reducing the average pore size enhanced the adhesion and proliferation of MC3T3-E1 cells when the porosity was constant. Animal experiments showed that the scaffold with 65% porosity and 550 μm pore size had the most significant new bone formation effect. Based on our research results, we concluded that a porous structure design with 65% porosity and an average pore size of 550 μm, resembling bone trabecular, had the most significant effect on enhancing the comprehensive performance of titanium alloy implants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular bone scaffold</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Titanium alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porosity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pore size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osseointegration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Runqing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gong, Xi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yihan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Chengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Zhixian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Zhuoyue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Zhiwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaopeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Weiguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dezhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiaobin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yingang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Materials and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="w">(DE-576)096806656</subfield><subfield code="x">1873-4197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.32</subfield><subfield code="j">Werkstoffmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
score |
7.399357 |