Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors
Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bri...
Ausführliche Beschreibung
Autor*in: |
Nie, Zhenhua [verfasserIn] Li, Fuquan [verfasserIn] Li, Jun [verfasserIn] Hao, Hong [verfasserIn] Lin, Yizhou [verfasserIn] Ma, Hongwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of sound and vibration - London : Academic Press, 1964, 568 |
---|---|
Übergeordnetes Werk: |
volume:568 |
DOI / URN: |
10.1016/j.jsv.2023.117966 |
---|
Katalog-ID: |
ELV065310578 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV065310578 | ||
003 | DE-627 | ||
005 | 20231103093046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231029s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jsv.2023.117966 |2 doi | |
035 | |a (DE-627)ELV065310578 | ||
035 | |a (ELSEVIER)S0022-460X(23)00415-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.12 |2 bkl | ||
084 | |a 50.36 |2 bkl | ||
084 | |a 53.79 |2 bkl | ||
084 | |a 50.32 |2 bkl | ||
084 | |a 58.56 |2 bkl | ||
100 | 1 | |a Nie, Zhenhua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. | ||
650 | 4 | |a Structural damage identification | |
650 | 4 | |a Baseline-free | |
650 | 4 | |a Limited sensors | |
650 | 4 | |a Principal component analysis | |
650 | 4 | |a Hilbert transform | |
650 | 4 | |a Instantaneous frequency | |
700 | 1 | |a Li, Fuquan |e verfasserin |4 aut | |
700 | 1 | |a Li, Jun |e verfasserin |0 (orcid)0000-0002-0148-0419 |4 aut | |
700 | 1 | |a Hao, Hong |e verfasserin |4 aut | |
700 | 1 | |a Lin, Yizhou |e verfasserin |4 aut | |
700 | 1 | |a Ma, Hongwei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of sound and vibration |d London : Academic Press, 1964 |g 568 |h Online-Ressource |w (DE-627)268125759 |w (DE-600)1471444-9 |w (DE-576)255266553 |x 0022-460X |7 nnns |
773 | 1 | 8 | |g volume:568 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.12 |j Akustik |q VZ |
936 | b | k | |a 50.36 |j Technische Akustik |q VZ |
936 | b | k | |a 53.79 |j Elektroakustik |j Tonstudiotechnik |q VZ |
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |q VZ |
936 | b | k | |a 58.56 |j Lärmschutz |j Erschütterungsdämpfung |q VZ |
951 | |a AR | ||
952 | |d 568 |
author_variant |
z n zn f l fl j l jl h h hh y l yl h m hm |
---|---|
matchkey_str |
article:0022460X:2023----::aeieretutrlaaeeetouigchletrn |
hierarchy_sort_str |
2023 |
bklnumber |
33.12 50.36 53.79 50.32 58.56 |
publishDate |
2023 |
allfields |
10.1016/j.jsv.2023.117966 doi (DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 DE-627 ger DE-627 rda eng 530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Nie, Zhenhua verfasserin aut Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency Li, Fuquan verfasserin aut Li, Jun verfasserin (orcid)0000-0002-0148-0419 aut Hao, Hong verfasserin aut Lin, Yizhou verfasserin aut Ma, Hongwei verfasserin aut Enthalten in Journal of sound and vibration London : Academic Press, 1964 568 Online-Ressource (DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 0022-460X nnns volume:568 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.12 Akustik VZ 50.36 Technische Akustik VZ 53.79 Elektroakustik Tonstudiotechnik VZ 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 58.56 Lärmschutz Erschütterungsdämpfung VZ AR 568 |
spelling |
10.1016/j.jsv.2023.117966 doi (DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 DE-627 ger DE-627 rda eng 530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Nie, Zhenhua verfasserin aut Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency Li, Fuquan verfasserin aut Li, Jun verfasserin (orcid)0000-0002-0148-0419 aut Hao, Hong verfasserin aut Lin, Yizhou verfasserin aut Ma, Hongwei verfasserin aut Enthalten in Journal of sound and vibration London : Academic Press, 1964 568 Online-Ressource (DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 0022-460X nnns volume:568 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.12 Akustik VZ 50.36 Technische Akustik VZ 53.79 Elektroakustik Tonstudiotechnik VZ 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 58.56 Lärmschutz Erschütterungsdämpfung VZ AR 568 |
allfields_unstemmed |
10.1016/j.jsv.2023.117966 doi (DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 DE-627 ger DE-627 rda eng 530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Nie, Zhenhua verfasserin aut Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency Li, Fuquan verfasserin aut Li, Jun verfasserin (orcid)0000-0002-0148-0419 aut Hao, Hong verfasserin aut Lin, Yizhou verfasserin aut Ma, Hongwei verfasserin aut Enthalten in Journal of sound and vibration London : Academic Press, 1964 568 Online-Ressource (DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 0022-460X nnns volume:568 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.12 Akustik VZ 50.36 Technische Akustik VZ 53.79 Elektroakustik Tonstudiotechnik VZ 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 58.56 Lärmschutz Erschütterungsdämpfung VZ AR 568 |
allfieldsGer |
10.1016/j.jsv.2023.117966 doi (DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 DE-627 ger DE-627 rda eng 530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Nie, Zhenhua verfasserin aut Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency Li, Fuquan verfasserin aut Li, Jun verfasserin (orcid)0000-0002-0148-0419 aut Hao, Hong verfasserin aut Lin, Yizhou verfasserin aut Ma, Hongwei verfasserin aut Enthalten in Journal of sound and vibration London : Academic Press, 1964 568 Online-Ressource (DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 0022-460X nnns volume:568 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.12 Akustik VZ 50.36 Technische Akustik VZ 53.79 Elektroakustik Tonstudiotechnik VZ 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 58.56 Lärmschutz Erschütterungsdämpfung VZ AR 568 |
allfieldsSound |
10.1016/j.jsv.2023.117966 doi (DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 DE-627 ger DE-627 rda eng 530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Nie, Zhenhua verfasserin aut Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency Li, Fuquan verfasserin aut Li, Jun verfasserin (orcid)0000-0002-0148-0419 aut Hao, Hong verfasserin aut Lin, Yizhou verfasserin aut Ma, Hongwei verfasserin aut Enthalten in Journal of sound and vibration London : Academic Press, 1964 568 Online-Ressource (DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 0022-460X nnns volume:568 GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.12 Akustik VZ 50.36 Technische Akustik VZ 53.79 Elektroakustik Tonstudiotechnik VZ 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 58.56 Lärmschutz Erschütterungsdämpfung VZ AR 568 |
language |
English |
source |
Enthalten in Journal of sound and vibration 568 volume:568 |
sourceStr |
Enthalten in Journal of sound and vibration 568 volume:568 |
format_phy_str_mv |
Article |
bklname |
Akustik Technische Akustik Elektroakustik Tonstudiotechnik Dynamik Schwingungslehre Lärmschutz Erschütterungsdämpfung |
institution |
findex.gbv.de |
topic_facet |
Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of sound and vibration |
authorswithroles_txt_mv |
Nie, Zhenhua @@aut@@ Li, Fuquan @@aut@@ Li, Jun @@aut@@ Hao, Hong @@aut@@ Lin, Yizhou @@aut@@ Ma, Hongwei @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
268125759 |
dewey-sort |
3530 |
id |
ELV065310578 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065310578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231029s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsv.2023.117966</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065310578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-460X(23)00415-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nie, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural damage identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baseline-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limited sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instantaneous frequency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fuquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0148-0419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yizhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sound and vibration</subfield><subfield code="d">London : Academic Press, 1964</subfield><subfield code="g">568</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268125759</subfield><subfield code="w">(DE-600)1471444-9</subfield><subfield code="w">(DE-576)255266553</subfield><subfield code="x">0022-460X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:568</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="j">Akustik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="j">Technische Akustik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.79</subfield><subfield code="j">Elektroakustik</subfield><subfield code="j">Tonstudiotechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.56</subfield><subfield code="j">Lärmschutz</subfield><subfield code="j">Erschütterungsdämpfung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">568</subfield></datafield></record></collection>
|
author |
Nie, Zhenhua |
spellingShingle |
Nie, Zhenhua ddc 530 bkl 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 misc Structural damage identification misc Baseline-free misc Limited sensors misc Principal component analysis misc Hilbert transform misc Instantaneous frequency Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
authorStr |
Nie, Zhenhua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268125759 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0022-460X |
topic_title |
530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors Structural damage identification Baseline-free Limited sensors Principal component analysis Hilbert transform Instantaneous frequency |
topic |
ddc 530 bkl 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 misc Structural damage identification misc Baseline-free misc Limited sensors misc Principal component analysis misc Hilbert transform misc Instantaneous frequency |
topic_unstemmed |
ddc 530 bkl 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 misc Structural damage identification misc Baseline-free misc Limited sensors misc Principal component analysis misc Hilbert transform misc Instantaneous frequency |
topic_browse |
ddc 530 bkl 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 misc Structural damage identification misc Baseline-free misc Limited sensors misc Principal component analysis misc Hilbert transform misc Instantaneous frequency |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of sound and vibration |
hierarchy_parent_id |
268125759 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of sound and vibration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268125759 (DE-600)1471444-9 (DE-576)255266553 |
title |
Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
ctrlnum |
(DE-627)ELV065310578 (ELSEVIER)S0022-460X(23)00415-7 |
title_full |
Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
author_sort |
Nie, Zhenhua |
journal |
Journal of sound and vibration |
journalStr |
Journal of sound and vibration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Nie, Zhenhua Li, Fuquan Li, Jun Hao, Hong Lin, Yizhou Ma, Hongwei |
container_volume |
568 |
class |
530 VZ 33.12 bkl 50.36 bkl 53.79 bkl 50.32 bkl 58.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nie, Zhenhua |
doi_str_mv |
10.1016/j.jsv.2023.117966 |
normlink |
(ORCID)0000-0002-0148-0419 |
normlink_prefix_str_mv |
(orcid)0000-0002-0148-0419 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
baseline-free structural damage detection using pca- hilbert transform with limited sensors |
title_auth |
Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
abstract |
Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. |
abstractGer |
Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. |
abstract_unstemmed |
Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors |
remote_bool |
true |
author2 |
Li, Fuquan Li, Jun Hao, Hong Lin, Yizhou Ma, Hongwei |
author2Str |
Li, Fuquan Li, Jun Hao, Hong Lin, Yizhou Ma, Hongwei |
ppnlink |
268125759 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jsv.2023.117966 |
up_date |
2024-07-06T22:35:07.014Z |
_version_ |
1803870857608560640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV065310578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231103093046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231029s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jsv.2023.117966</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV065310578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-460X(23)00415-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.36</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.79</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nie, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Baseline-free structural damage detection using PCA- Hilbert transform with limited sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Conventional vibration-based damage identification methods need a large number of sensors on the bridge to identify the structural modal information and rely on the response data of bridges under a non-damage state for comparison, which restricts their implementations in the health monitoring of bridge structures in service. This paper proposes a baseline-free structural damage detection method based on limited sensor information. The proposed method uses the Hilbert transform combined with principal component analysis (PCA) to locate the damage. Firstly, PCA is performed on the displacement response data matrix of the bridge under a moving load to obtain the principal component matrix. According to the physical interpretation of PCA of the responses of a beam-like bridge under a moving load, each column of the principal component matrix, namely the principal component, composes of a mode shape and the dynamic information at this modal frequency of the bridge. The dynamic information of the modal frequency is indirectly obtained by filtering out the mode shape by low pass filter. Then the Hilbert transform is used to process the dynamic component information to receive the instantaneous frequency which is regarded as the damage index. When the structure is damaged, the first instantaneous frequency at the damaged location changes abruptly. To demonstrate the effectiveness and performance of the proposed method, numerical simulations and experimental validations on beam bridge models are conducted. The results show that the method is free from the requirement of the information of bridges under the undamaged state, and only limited sensors are needed to locate the damage.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural damage identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baseline-free</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limited sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal component analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instantaneous frequency</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Fuquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0148-0419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yizhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sound and vibration</subfield><subfield code="d">London : Academic Press, 1964</subfield><subfield code="g">568</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268125759</subfield><subfield code="w">(DE-600)1471444-9</subfield><subfield code="w">(DE-576)255266553</subfield><subfield code="x">0022-460X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:568</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.12</subfield><subfield code="j">Akustik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.36</subfield><subfield code="j">Technische Akustik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.79</subfield><subfield code="j">Elektroakustik</subfield><subfield code="j">Tonstudiotechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.56</subfield><subfield code="j">Lärmschutz</subfield><subfield code="j">Erschütterungsdämpfung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">568</subfield></datafield></record></collection>
|
score |
7.400732 |